Red Sky
Pushing Toward Petascale with Commodity Systems

Matthew Bohnsack
Sandia National Laboratories
Albuquerque, New Mexico USA
mpbohns@sandia.gov

Tuesday March 9, 2010
1. Introduction
2. People
3. Hardware
4. Software
5. Performance
6. Questions?
HPC at Sandia

- Capability Computing
 - Designed for scaling for single large runs
 - Usually proprietary for maximum performance
 - Red Storm is Sandia’s current capability machine

- Capacity Computing
 - Computing for the masses
 - 100s of jobs and 100s of users
 - Extreme reliability required
 - Flexibility for changing workload
 - Thunderbird will be decommissioned this quarter
 - Red Sky is our future capacity computing platform
 - Red Mesa machine for National Renewable Energy Lab
Strategic Goals

- Meet critical and growing need
 - Thunderbird being decommissioned
 - Capacity systems oversubscribed by $4 \times$
 - Set a new standard for value

- Create strategic partnerships
 - Engage tier 1 vendor (Sun/Oracle)
 - Leverage supply chain (Intel)
 - Diversify to energy sector (NREL)

- Sustain leadership
 - Demonstrate feasibility of petascale midrange system
 - Democratize benefits of “Red” architecture
Main Themes

■ Cheaper
 ■ 5× capacity of Tbird at 2/3 the cost
 ■ Substantially cheaper per FLOP than recent capacity platforms

■ Leaner
 ■ Lower operational costs
 ■ Three security environments via modular fabric
 ■ Expandable, upgradable, extensible
 ■ Designed for 6 year life cycle

■ Greener
 ■ 15% less power . . . 1/6 power per flop
 ■ 40% less water . . . 5M gallons saved annually
 ■ Near 10× better cooling efficiency
 ■ 4× denser footprint
Major Innovations

- Bridging from capacity to capability
 - Many “Red” characteristics at commodity price
 - 2-3× faster than Red Storm in mid range
 - 1/3 operational costs

- Top ten Red Sky innovations
 - Petascale midrange system
 - Intel Nehalem processor
 - QDR InfiniBand
 - 3D mesh/torus
 - 12× optical cabling
 - Optical Red/Black switching
 - Refrigerant cooling / glacier doors
 - Power distribution
 - Routing and interconnect resiliency
 - Minimal Ethernet & boot over IB
Floorplan: 68 Blade Racks + 20 Storage Racks

Legend:
- 'Z' x 'Z' raised floor tile
- C48 compute rack with glacier door
- Disk Rack
- APC PDU
- Red/Black switch rack
- Straight-through network connection
- Empty Rack
- Empty space
- Y Dimension IB connections

Section 1 - Always Black
Section 2
Section 3
Section 4 - Always Red

A
S-A1 S-A2
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

B
S-B1 S-B2
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

C
S-C1 S-C2
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
S-D1 S-D2
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

E
S-E1
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

F
S-F1
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Matthew Bohnsack (Sandia Nat’l Labs)
Red Sky
Tuesday March 9, 2010 7 / 35
Capacity Computing at Sandia

Red Sky
(325 TF, 3500 nodes, QDR IB)

TLCC Cluster
(38 TF, 288 Nodes, DDR IB)

IO and Viz clusters

DDN 9550 FC

10GigE Transfer Nodes

2 Login Nodes

Network

12 IB to IB Lustre Routers

2 Login Nodes

IO and Viz

1.5 PB

NAS (200 TB)

HPC 10GigE

NAS/ Mgmt. 1/10GigE

4 Login Nodes

14 IB to 10GigE Lustre Routers

2 Gateway nodes

HPSS
Up to 10 PB

Users

External 1/10GigE

Matthew Bohnsack (Sandia Nat’l Labs)
1 Introduction

2 People

3 Hardware

4 Software

5 Performance

6 Questions?
People

- Integrating an innovative 500+ TFLOP/s system is not easy!
- It requires smart, hard-working people:
1 Introduction

2 People

3 Hardware

4 Software

5 Performance

6 Questions?
Hardware Overview

- 505 TFLOP/s Peak
- 5,386 nodes (2,693 Sun X6275 blades)
- 2.93 GHz quad core, Nehalem X5570 processors (43,088 total cores)
- 12 GiB DDR3 RAM per node (1.5 per core – 64 TiB total RAM)
- 3D torus InfiniBand
- QDR via Mellanox ConnectX on MB and InfiniScale IV in QNEM
- 1,440 12× IB cables = 9.1 miles (220 miles of optical strands)
- 2,304 1 TB Seagate disks in 96 J4400 JBOD enclosures
 - 2 PB (raw) for /scratch filesystems
- R134a-based cooling doors
- 1.7 MW power
- 1,848 square feet of space in 6 rows
- 68 Sun C48 cabinets
- up to 96 nodes per rack
- up to 768 cores per rack
Power

Specs
- High density APC modular PDU: 288 kW in 1/2 rack
- Half rack for six Sun 6048 Racks
- Safely service without forced shutdowns
- 400 A 240Y / 415 V three phase input feed
- $24 \times 3 \times 16$ A 240 V power whips
- Three-to-one reduction in cables
- Delivers far more power per square foot

Savings
- Copper – Smaller wire size for 415 V
- Load Power Supply Efficiency
- Less Cooling Required
Cooling

- Sun’s Glacier Door
 - 1st rack-mounted, refrigerant-based, passive cooling system on the market

- Liebert’s XDP
 - First deployment
 - Pumping unit isolates chilled water system from refrigerant circuit
 - Operates above dew point
 - No compressor
 - Power for cooling rather than dehumidification
 - 0.13 kW per kW cooling
Rack: Sun Blade 6048 Chassis

- 4 shelves in a rack
- 12 blade slots per shelf
- 2 nodes per blade slot with X6275
- 1 Chassis Management Module (CMM) per shelf
- 1 QNEM in each shelf
Blade: Sun X6275 (Vayu)

- 2 Nodes per Blade
- Dual-Socket Nehalem-EP Node
 - 2.93 GHz quad-core, 93.8 GFLOP/s peak
 - 3-channel integrated memory controller
 - 1333 MHz DDR3 memory
 - 12 GiB per node
 - 63.9 GB/s peak
- Integrated Ethernet
 - Shared 10/100 mgmt. network
 - 1 Gbit/s Ethernet via NEM (OOB mgmt only)
- Integrated QDR InfiniBand host adapter
 - Mellanox ConnectX
 - 40 Gbit/s to NEM module
QNEM: 3D Torus Building Block

- QDR Network Express Module (QNEM)
- Four in each blade rack (one per shelf)
- Two vertices per shelf, with intra-shelf Z connectivity “on PCB”.
- These switches are interconnected with each other
- No core switches are used
3-Torus Example: 288 36-Port Switch Chip “Nodes”
3-Torus Example: Z Links, No Wrap-Around
3-Torus Example: X Links, No Wrap-Around
3-Torus Example: Y Links, No Wrap-Around
3-Torus Example: Z Wrap-Around Links
3-Torus Example: X Wrap-Around Links
3-Torus Example: Y Wrap-Around Links
3-Torus Example: Host Bristles

Up to 12 host bristles per switch chip
1 Introduction

2 People

3 Hardware

4 Software

5 Performance

6 Questions?
Software Overview

- CentOS 5.3
- OFED 1.4.2
- SNL modified OpenSM with custom routing engine (torus-2QoS)
- Diskless boot over IB using a custom isolinux bootstrap or gPXE
- oneSIS for shared image and diskless/stateless boot
- git for image management and revision control
- SNL-developed system management toolset
- SNL-developed RAS system
- Linux software RAID
- Lustre 1.8.x with patchless clients
- SLURM + Moab workload manager
- Intel compiler suite
- OpenMPI 1.4.1+
Service Nodes and Who Boots Whom

Management Ethernet

External Network

InfiniBand Network

External Network

34 OSS/MDS

7 Gateway

4 Login

Matthew Bohnsack (Sandia Nat’l Labs)
Integration Challenges

- Naming and attributes
- Red/Black switching, swings, and expansion
- No client Ethernet
- 3D torus on InfiniBand
- No good, resilient routing algorithm for torus
- Some difficulty with $12 \times$ fiber IB cables
- Software RAID for Lustre back-end storage
- Boot over InfiniBand
- New cooling system and impact on operation activities
5 Performance
Linpack

- **Official Top 500 November 2009 #10 result:**
 - 423.9 TFLOP/s on 5,202 nodes
 - 86.9% efficiency

<table>
<thead>
<tr>
<th>T/V</th>
<th>N</th>
<th>NB</th>
<th>P</th>
<th>Q</th>
<th>Time</th>
<th>Gflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR03C2L4</td>
<td>2479989</td>
<td>128</td>
<td>102</td>
<td>102</td>
<td>23988.13</td>
<td>4.239e+05</td>
</tr>
</tbody>
</table>

- \[\|Ax-b\|_oo/(\epsilon*(\|A\|_oo*\|x\|_oo+\|b\|_oo)*N) = 0.0006766 \] PASSED

- **Unofficial #9 result:**
 - 433.5 TFLOP/s on 5,305 nodes
 - 87.2% efficiency

<table>
<thead>
<tr>
<th>T/V</th>
<th>N</th>
<th>NB</th>
<th>P</th>
<th>Q</th>
<th>Time</th>
<th>Gflops</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR03C2L4</td>
<td>2504421</td>
<td>128</td>
<td>103</td>
<td>103</td>
<td>24158.53</td>
<td>4.335e+05</td>
</tr>
</tbody>
</table>

- \[\|Ax-b\|_oo/(\epsilon*(\|A\|_oo*\|x\|_oo+\|b\|_oo)*N) = 0.0005830 \] PASSED
CTH Shape Charge: Wall Time for 100 time Steps: Weak Scaling with 80x192x80 Cells/core
Mini-Application HPCCG; Weak Scaling:
Wall Times, secs

- Red Storm Quad
- TLCC
- RedSky - NUMA

Wall Time, secs
1 10 100 1000 10000
0 10 20 30 40 50 60 70
PRESTO 4.14.1: Walls Collision (ACME) Weak Scaling
10,240 Elements/task; 596 Time Steps

Wall Clock Time, hr:mi:sec

Number of MPI Tasks

Red Storm Quad
TLCC
RedSky: NUMA
1 Introduction

2 People

3 Hardware

4 Software

5 Performance

6 Questions?