
 1

Abstract—Modern high-performance computers are often

implemented as clusters. A cluster is comprised of several

machines, each representing a compute node. Local resource

managers are used to grant access to these nodes. Once access is

granted to a node, a user has exclusive access to the entire node

including its local filesystem and network interface. In addition to

serving as a computational cluster, these sites are often highly

connected to a network: for example, sites participating in the US

TeraGrid system have between ten and forty gigabits per second

of available bandwidth and each computational node in a

TeraGrid cluster typically has a one gigabit per second network

interface. However, since it is a compute cluster, jobs are often

computationally bound, in which case most of this bandwidth is

unused.

In order to stage in and out data sets, or to publish

computational results, sites provide file transfer services.

Achieving peak transfer speeds requires a significant number of

nodes. Packet switching at top speeds put a load on a CPU that

prohibits locating user compute jobs and site transfer processes

on the same node. Thus, administrators partition their resources

into compute nodes and transfer nodes. Due to fluctuating

transfer requirements and the desire to avoid idle resources it is

difficult to determine this partition statically. Ideally, the

partitioning could be adjusted dynamically to suit immediate

needs.

This paper studies this dynamic resource partitioning problem.

We propose an architecture that allows transfer nodes to be

acquired from the computational queue when needed, and

returned when no longer required. The site administrator has a

means to set a policy regarding how long a transfer node can be

idle before being returned, and when to request additional nodes.

We measure the costs associated with a prototype implementation

of this architecture and study the impact of different policies on

achieved performance

Index Terms—GridFTP, Dynamic Resource Allocation,

Backend

I. INTRODUCTION

Science has many computationally intense problems. To

foster research, so-called “space shared, batch scheduled”

systems have been developed that allow many users to obtain

dedicated access to powerful computer processors, or nodes,

via local resource managers (LRMs). An LRM is an interface

to a run queue. LRMs allow jobs shared exclusive access to

system resources. A user requests a certain number of nodes

and the required wallclock time, and then waits until their

request is serviced. Once the LRM can fulfill the request, the

user’s job may use 100% of the resources associated with the

allocated nodes.

On modern computational systems, like the TeraGrid [1], it

is common that such systems are implemented as Linux

clusters. Each compute node is a full Linux system. When a

user gains access to a node, they acquire exclusive use of the

entire Linux machine and all of its devices, including the

network interface card (NIC) and filesystem. Despite such

systems being mainly targeted at computationally bounded

jobs, their network connectivity is typically quite good. In the

case of TeraGrid clusters, each node has its own Gbit/s NIC

that connects to a 10Gbit/s switch.

Jobs make use of the network by staging in data sets for

processing and staging out results for analysis. Jobs also

perform I/O using any of several network and parallel file

systems such as NFS [2], PVFS [3], and GPFS [4]. Jobs may

also establish local and wide area network connections to

service application-specific needs. However, most jobs are

CPU-bound, and thus a cluster typically does not use all

available bandwidth simply to service the needs of general

user jobs submitted to the queue. For example, the TeraGrid

publishes the network utilization of their routers at

https://network.teragrid.org/. Rarely are peaks of a twenty

second average over 2 Gbit/s, and the majority of the time the

network is idle.

Clusters also commonly run data transfer services so that

external clients can access data stored on file systems attached

to the cluster. This external access may be used, for example,

to enable community access to result sets. On TeraGrid,

GridFTP is used as the primary data transfer service because

of its high performance and scalability: the Globus GridFTP

implementation can easily scale to the 30-40Gbit/s of external

bandwidth available at some TeraGrid sites—if sufficient

nodes can be dedicated to data transfer tasks. However,

because each individual node has only a 1 Gbit/s NIC, in order

to fully utilize a 40 Gbit/s network, forty nodes must

participate in a transfer with 100% of their NIC. In practice,

An Architecture for Dynamic Allocation of

Compute Cluster Bandwidth

John Bresnahan
1,2,3

, Ian Foster
1,2,3

1
Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

2
Computation Institute, University of Chicago, Chicago, IL 60637

3
Department of Computer Science, University of Chicago, Chicago, IL 60637

{bresnaha, foster}@mcs.anl.gov

 2

sites are reluctant to dedicate that number of nodes to data

transfer tasks, given that it is only occasionally that external

clients require this data transfer rate. Thus, innovative uses of

TeraGrid clusters, such as network replication applications,

proxy applications, and transfer applications such as DRS [5]

and SQUID [6], cannot be supported.

One solution to this problem is to dedicate nodes to the data

transfer service. However, unless the site is constantly in need

of peak data transfer requirements, some of these nodes will be

idle. Typically, peak data transfer requirements are short lived.

Assuming that the LRM always has some jobs in the wait state

(which is typical for successful compute sites), this leads to a

situation where the site has job requests waiting even though

there are idle resources on which they could run. Since these

idle resources could be diverted to servicing computational

jobs, again the wait times are artificially long.

Another solution is to use a node for the data transfer

service while that same node is servicing a user’s job.

However this approach is also not ideal. On modern

processors, packet switching at gigabit rates requires a

significant amount of the CPU. When any type of security

processing, like packet signing or encrypting, is used the

problem is greatly exacerbated. On a dual Itanium-64 1.5GHz

UC TeraGrid node, we ran transfer tests for ten seconds and

measured the CPU load using some common performance

benchmarks: iperf [7], globus-url-copy [8], globus-xioperf [9],

and netperf [10]. The results are shown in Table 1. In the best

case, 8% of the CPU was used which is a nontrivial amount if

the user is expecting a dedicated resource. Users who have

acquired nodes from the queue have an expectation of

exclusive access to the node’s resources, co-locating a high

performance transfer with a user’s job would not only deny the

user network cycles that they may require, but also CPU and

memory bus cycles.

Table 1: CPU load imposed by different network

benchmarks

Benchmark CPU Load (%) Transfer Rate (Mbit/s)

netperf 8 990

iperf 10 990

globus-url-copy 13 944

globus-xioperf 11 944

globus-xioperf (gsi integrity) 79 99

globus-xioperf (gsi private) 88 40

The correct solution to this data transfer problem, we

believe, is to allow nodes to be transferred dynamically, in an

on-demand fashion, between a pool of compute resources and

a pool of data transfer resources. When data transfer

requirements increase, nodes can be transferred from the

compute pool to the data transfer pool; when the transfer load

drops, or perhaps when the compute load increases, nodes can

be returned to the compute pool and again used to service

computational requests. In this way, we ensure that there are

never idle resources when job requests (or data requests) wait

to be serviced.

This paper proposes an architecture that allows such a

dynamic partitioning of transfer nodes and compute nodes. We

present an architecture that can work with any standard LRM

on a computational cluster. We propose extensions to the

Globus Toolkit(tm) GridFTP server [11] and develop

implementation techniques to support this architecture. We use

monitoring interfaces defined by the Web Services Resource

Framework (WSRF) [12] to observe the state of the

architecture in a non-disruptive and modular way, and allow

site administrators to set policies controlling the partitions in a

modular fashion. We performance test a prototype system to

determine costs associated with our approach.

II. RELATED WORK

We review work that has overlapping concepts and solves

similar problems to that of dynamic allocation of compute

cluster bandwidth. The majority of such work focuses on

storage space or CPU scavenging. We also look at concepts in

queuing theory. Because we are allocating resources to user

requests there is overlap with queuing research. Additionally

we review work regarding load predictions for both network

transfers and computational jobs.

Shadan et al., in their paper “Dynamic Mirroring for

Efficient Web Server Performance Management” [13], propose

a solution for dynamically mirroring of web servers. In their

approach, they have a set of cooperative web servers. As the

main server’s load gets unacceptably high, they transfer some

portion of the data to a selected mirror site. This work

introduces interesting concepts for WAN replication, but that

is not the goal of our research. In our work we decouple a

transfer resource from a storage resource. Further, they assume

a static set of mirror servers and do not allow for a growing

and shrinking pool of resources, which is an important part of

our work.

Freeloader [14] is a distributed storage scavenging system. It

takes advantage of unused desktop storage and available

bandwidth to create a distributed storage cache for read only

data. Freeloader asserts that desktop machines do not have the

storage capacity to store large scientific data sets on local disk

in their entirety, yet at the same time at least half of the local

disk is typically empty. Its goal is to harness all empty disk

space at a site into a single data cache with little additional

expense. The work we present here shares the ideas of

reclaiming idle bandwidth, and the idea of providing

additional I/O power at little additional cost to the site;

however we are not investigating storage systems. Our focus is

on high utilization of network resources.

Domain Name Service (DNS) has a load balancing feature.

It can be used to share host load by mapping server physical

machines to the same domain name. Clients send the DNS a

domain name, and the DNS returns to them an IP address.

 3

When DNS-Round-Robin is in place, several IP addresses are

mapped to the same domain name. The IP address that the

DNS chooses to respond with is selected in a round robin

fashion. While effectively distributing the physical machines to

which a client connects, it does not distribute load. A client

may lookup a server and not use it for a transfer, in which case

some servers will be used for transfers more often than others.

In our approach we only seek out a transfer node when we

have a transfer request, therefore we have a good idea of the

load it will incur. More importantly, the DNS approach does

not take into account sharing of computational and transfer

resources in a dynamically changing environment.

Our work overlaps with concepts prevalent in queuing

theory. We are allocating resources to support a user load

which is the fundamental problem that queues are designed to

solve. Our work is not researching into the field of queuing

theory. We are rather acting as a user of it from a layer above.

However, it is important for us to understand how we are

affected by some of its fundamental concepts. Additionally,

ongoing work in this field will allow some important

extensions to the architecture we propose here.

The backfill algorithms described in “Core Algorithms of

the MAUI Scheduler” [15] and "Utilization, Predictability,

Workloads, and User Runtime Estimates in Scheduling the

IBM SP2 with Backfilling" [16] play a role in node acquisition

for our system. The proposed architecture will perform best

when nodes can be obtained quickly. Further, most transfer

jobs run for a relatively short amount of time. These two

characteristics dovetail well into backfill. A queue maintains a

list of jobs that it orders according to priority. To prevent

starvation, the order in which the jobs are requested plays a

strong role in this priority. The scheduler then matches jobs

with nodes. Higher priority jobs receiver earlier start times.

Since requests vary in wallclock time and number of nodes

required, the process inevitably leaves time gaps between jobs.

Backfilling searches the remaining lower priority job to find

those that can fit into these time gaps. This can result in lower

priority jobs running before higher priority jobs, but it does not

delay any job from its originally scheduled time, it simply uses

what would otherwise be idle time. Naturally jobs which

request a small number of nodes and a short wallclock time are

able to fit into the most gaps and thus have a higher likelihood

of running at an earlier time. Our architecture takes advantage

of this by always requesting the smallest number of nodes, and

a relatively short wallclock time.

There has been much research on predicting resource load

requirements [17] [18] [19], including network loads [20] [21]

[22]. Our system can benefit from this work. If we were able to

predict network loads quickly and accurately enough, we could

set resources aside ahead of time for network traffic spikes. To

allow for this possibility, we have designed into our

architecture a way for prediction algorithms to be implemented

in a natural and modular fashion. We discuss this topic when

we introduce the controller program.

Fast access to nodes is one challenge that our architecture

faces. We cannot instantly obtain a node because a user’s job

may be running on it. Therefore we must wait for a job to

complete before the scheduler will even consider granting

access to our system. Ideally we could suspend any running

job, use its node for a transfer, and then restart that user’s job

when we are finished, all without disrupting the job or denying

it wallclock time. Research into virtual machines [23] can be

used to achieve this. By running each job in a virtual machine

the entire system state can be suspended and even migrated to

another host. As this research advances we expect it to provide

solutions for immediate node access.

III. ARCHITECTURE

Recall that our goal is to define an architecture which allows

well connected computational clusters to service bandwidth

greedy applications without incurring the cost of dedicated

resources. We propose a modular architecture that uses as

many existing components as possible. Monitoring software is

used to observe the state of the stock components and provide

enough information so that policy decisions can be made in a

separate and noninvasive process. Our architecture defines the

following components:

Nodes: Nodes are full computer systems complete with their

operating system, CPU, memory, disk and NIC. A typical

example is a PC running Linux. Nodes are used for servicing

user requests. They must be appropriate for both computation

and transfer with fast NICs (e.g., gigabit Ethernet cards) and

fast modern CPUs. Nodes should have access to a shared file

system. This is a common description for most computational

clusters, as on the TeraGrid.

LRM: An admission control queue that has its own means

for setting policy for granting access to nodes. The ability to

set high priority in order to preempt jobs that have waited

longer in the queue, and the ability to suspend running jobs are

important features but not mandatory. Common examples of

such LRMs are PBS [24], LSF [25], MAUI, and LoadLeveler

[26]. A GRAM [27] interface to the LRM is recommended.

Transfer Service: This is the component responsible for

transferring data in and out of the cluster. The transfer service

comprises a frontend service and a set of backend services.

The frontend service acts as a contact point for clients, and as

a load balancing proxy to the backend services which move the

data. Backend services run on nodes acquired from the LRM.

The frontend must be instrumented with monitoring software

so that an external process can observe its state to make

decisions based upon the load.

Controller: This component is the brain of the system. It

observes the frontend transfer service to determine when client

load is high or when the backend transfer node pool is idle, at

which point it interacts with the LRM to either acquire a new

node for use in data transfer or release an idle node from the

transfer pool back into the computational queue. The

controller’s decisions are based upon a policy set by the site

administrator.

 4

Figure 1 shows how these components interact. Clients

contact the frontend transfer service with transfer requests. The

frontend goes to the transfer node pool to find an available

backend service. The backend service with the lowest load is

selected to perform the transfer. If there is no available

backend service, or all are too busy, the frontend waits for

some amount of time and then asks again. The client is stalled

on this process but is free to timeout without disturbing the

system.

The controller observes the state of the frontend service.

When the client load exceeds the available resources in the

transfer pool, the controller requests a new backend service

from the LRM. The faster this request can be serviced, the

better the overall system’s performance. Ideally, the controller

would have special privileges allowing it to acquire nodes

immediately, for example by suspending current user jobs or

preempting other jobs that have waited longer. Typically

transfers do not require large amounts of time so nodes

acquired in this way could be returned to the compute pool

quickly.

Figure 1: Component Interaction

In the absence of, or in addition to, special rights to the

queue, the controller program can implement “caching” or

retention policies, meaning that it holds nodes for some time

before returning them. Similarly, “prefetching” policies can be

implemented that attempt to ensure that there are always idle

transfer nodes available: as resources in the transfer pool are

consumed, additional nodes can be requested from the LRM.

More sophisticated logic can also be implemented: for

example, we might observe the state of the frontend service

over a long time and make assumptions and predictions about

client load spikes. The controller can also access log files and

databases at the administrator's discretion. The optimal

policies may be site specific, so it is crucial to the architecture

that the administrators have a means to set sophisticated policy

in ways suited to their specific needs.

The architecture provides another important source of

flexibility. A client can interact directly with both the LRM

and the frontend service. Using their own credentials and

submission rights clients can request the same standard

backend service that the controller requests from the LRM.

The client can then request a transfer from the frontend service

specifically requesting use of its backend service. Once that

backend service has worked its way through the LRM’s wait

queue, the frontend will select it and the client’s transfer will

begin.

This feature allows the site to directly harness client

knowledge. The clients know what transfer load they require.

In this way they ask for resources directly from the LRM,

therefore they gain access to transfer nodes in a fair and

managed way. Further they maintain all of the conveniences of

a standard transfer service interface because they are not

required to stand up their own custom transfer services. If the

user needs specific resources and times dedicated to their

transfer they can arrange advanced reservations [28] in the

same familiar manner as they would for any compute job.

Further most LRMs have mechanisms to provide approximate

start times. This can be useful information to transfer

applications that need resource guarantees. This feature

effectively provides a mechanism for scheduling data transfers.

By running backend services directly from the LRM, instead

of via an intermediate provisioning service (like the frontend

and controller) all of the features of the LRM can be

leveraged. Scheduling the transfer with fair sharing to site

resources is then controlled in a more appropriate place, as is

load prediction and security audit trails.

IV. IMPLEMENTATION DETAILS

Our proposed architecture allows a site to use any LRM and

node configuration that it already has in place. Our goal is to

provide existing computational sites with insight into how they

can better leverage their available bandwidth. An important

subgoal is to be minimally disruptive to the existing system.

The only new components that we require to implement this

architecture are the transfer service and the controller.

A. Transfer Service

For the transfer service we use the GridFTP server released

with the Globus Toolkit [29]. This versatile piece of software

can be configured to run in a variety of modes [30]. For this

paper we used the separation of processes mode, which means

essentially that we configure it as a proxy server. A frontend

service acts as the contact point for clients wishing to initiate

data transfers; this service does not do any of the actual

transporting of data. The actual shipping of bits is left to the

backend services. The frontend and backend services

communicate with each other via an internal protocol

(typically over a LAN), which allows processes to be on

different machines. The backend services are workers for the

frontend and perform operations as they are directed.

 5

Figure 2: Separation of Processes

As shown in Figure 2, this setup allows the frontend service

to select from a set of backends. All backend services have

access to the same network and parallel filesystem and thus are

functionally equivalent. In the current GridFTP

implementation, incoming requests are allocated to backends

in a round robin fashion. In effect, the frontend service acts as

a load balancing proxy server. It is also free to select many

backend services for use in a single transfer, in which case it

divides the request by the number of selected backends and

forwards the divided requests along appropriately. This feature

is called striping. It is possible to mix striping and load

balancing, but for simplicity we focus here on load balancing

and reserve striping for future work.

B. GridFTP Modifications

The standard GridFTP server implementation requires that

the frontend be given a static list of backend services. These

are the only backends with which the frontend can

communicate, and the list must be known at the time the

frontend is started. Because we wish to create a system in

which the pool of backends shrinks and grows throughout the

frontend’s lifetime, we had to extend the GridFTP server.

 Specifically, we modified the frontend service to listen for a

connection on a given TCP port. When a connection is made,

the remote peer is authenticated via GSI [31]. If access is

granted, the peer can register a new backend service with the

frontend service. The newly registered backend service is now

an available resource to be used in the proxy server setup. A

timeout is associated with this registration. If no

communication with the specified backend service occurs

before the timeout, it is removed from the list of available

resources. Similarly if an error occurs when communicating

with the backend service, it is removed from the list of those

available. In addition to registering services, a peer can also

refresh or cancel an existing registration. The refresh allows

idle backend services to remain in the available list and serves

as a heartbeat monitor.

When clients requests transfers of the frontend, there must

be at least one available backend or the transfer will fail.

Additional modifications were made to cause the frontend to

check repeatedly for available backends after a configurable

delay. This functionality allows a client to use a backend that

became available subsequent to the initial transfer request.

C. Monitoring

In order to monitor the internal state of the GridFTP server,

we needed to instrument it with monitoring software similar to

that described in CUMULVS [32]. We required that this

monitoring software be minimally invasive and that it provide

a network interface for observation. It is not acceptable for a

monitored GridFTP server to be significantly slower or less

robust than a non-monitored server. Observation via a remote

process over a network interface allows experimentation with

various policies without the risk of crashing or hanging the

GridFTP server.

Each site has varying levels of logic needed to express its

partition policies. Rather than using a specific policy language,

we define the transfer service monitoring interface and a LRM

submission interface, and leave it up to a specific site

administrator to implement a controller process in whatever

form is convenient. Languages such as Python, Java, and C can

also be used to express logical policies. Further this allows

maximal flexibility and full use of all available knowledge

sources, including system logs, databases, and prediction

toolkits [33] [34]. Since system administrators will be writing

these scripts, it is important that it is easy to use the interfaces

to both the transfer services internal state and to the LRM.

For these reason we followed the approach taken in

GMonSteer [35] for monitoring the transfer service and

GRAM as the LRM interface. We use WSRF by embedding a

WS C Core hosting environment into the GridFTP server.

Controller programs are written as clients to this service.

Before we can explain the details of how this was done a brief

discussion on WSRF is required.

D. WSRF

WSRF introduces the concept of a resource into the web

services world. A resource is a collection of data types

represented by user-defined XML. In overly simplistic (yet

didactically useful) terms, the data representing the resource

lives in the service. Along with the resource, WSRF provides

some useful methods for accessing the state of the resource. A

client can get the values of any elements of the resource by

making a SOAP call to the GetResourceProperty operation.

Additionally, a client can subscribe for notification of changes

to a given resource. If we are working in a pull paradigm, a

client may poll for changes using GetResourceProperty, and if

we are in a push paradigm, the service signals the clients of

data changes, via the notification mechanisms.

Web Services provides clients access to operations.

Operations are remote method calls that a Web Service allows

clients to invoke via SOAP. The resource and the operations

associated with it are described in an XML document format

called Web Services Description Language (WSDL). Stubs are

 6

created from the WSDL which makes client interaction with

the service as easy as making a local function call. More

information on WS C and WSRF can be found in the WS C

Core web pages [36] and in “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations,” [37].

E. The Embedded Service

We identify the following list of internal state the frontend

service must expose to the controller:

• Current client connections: The number of clients

currently requesting or performing transfers.

• Max client connections: The maximum number of clients

allowed to connect simultaneously.

• Available Backend Services: The number of backend

services ready for use.

• Approximate load of each backend: a percentage

associated with each backend that approximates how hard it is

working.

We defined these states in a WSRF compliant WSDL

document as resource properties. The WSDL documents

serves as an interface definition for both clients and services.

We use it to generate stubs for the controller programs and

also to create a service for exposing these resource properties.

Because it is important for the service to be light weight and

have very low overhead interactions with the frontend service

we used WS C Core.

WS C Core is a light weight hosting environment that can

be embedded into the GridFTP frontend service. WS C Core

compiles to native code allowing it to be linked into existing

applications. From the WSDL we generate C bindings which

handle the conversion of SOAP messages into C data

structures. Using the bindings we create an embeddable

service that observes the internal state of the GridFTP server

and sets the resource properties appropriately as the state

changes. The service is linked into a shared library which is

loaded at runtime in the presence of an option. If loaded, the

WS service starts providing information; if not loaded, the

GridFTP server is left entirely unaffected.

F. Controller

The controller is a client to the embedded service. Via

WSRF, it gets notifications from the frontend service when

any of the resource properties defined above change. Stubs are

generated from the WSDL that make each notification a

simple function call. When a client connects or disconnects, or

when a backend is added or removed from the transfer pool, or

when the frontend service’s exposed state otherwise changes,

the controller is notified asynchronously. It then uses this

information to decide when to start new backend service

instances and when to kill existing ones.

The controller also observes the amount of time that any

backend is idle and may, depending on the policy that it

implements, decide to kill the backend service so that the

associated node can be returned to the compute resource pool.

The GridFTP server is fault tolerant and can handle

unexpected backend service termination. Termination of one

backend has no effect on any other, nor does it affect the

frontend service. However, it may leave a client that requested

a transfer with an error. Such errors are not a problem since

GridFTP transfers can be restarted in such a way that little data

needs retransmission.

The controller uses GRAM to start up new backend service

instances via the LRM. GRAM is used because it is a

convenient and easy to use interface to many different LRMs.

The ease of use is important for enabling the creation of site

specific policies. With GRAM starting up a new backend is a

simple function call available in many programming

languages. Additionally GRAM is a network protocol which

allows the controller to run on an entirely separate system from

that of the LRM. No CPU cycles or other resources are

diverted from the frontend and thus we can expect that the

performance of the transfer service will be minimally affected.

Figure 3: Event Sequence

Figure 3 shows the event sequence of our architecture. A

client connects to the frontend service and requests a transfer

(line 1). If an unused backend service instance has already

been registered with the frontend service it is used, if not the

frontend waits for one to be registered. The controller receives

a WSRF notification when the client connects telling it that the

state of the frontend service has changed (line 2). The

controller may then use the GRAM interface to the LRM to

start up a new instance of a backend service (line 3). The

newly requested backend service will not start immediately,

and the time it takes to start will vary with contention in the

LRM’s wait queue. When it does start, it registers itself with

the frontend service (line 5). The frontend service can now use

it and the clients can begin transferring data (line 6).

The decision as to when to start up a new backend service

instance is entirely up to the logic of the controller. In some

cases the controller will wait until a client request prompts the

need for a new backend. In other cases it may start a new

instance based on a prediction algorithm guessing that a

transfer request will be made in the near future. Its modular

placement in the architecture allows it to be noninvasive to the

 7

rest of the system. It simply observes the running state and

injects new resources when its policy allows.

V. EXPERIMENTAL STUDIES

To establish a proof of concept for this architecture we

developed a prototype system. We implemented all

modifications to the GridFTP server specified above. We

created controllers to implement some basic policies,

described in detail below. All tests were run using the

University of Chicago TeraGrid system, in which each node

has a 1.5GHz Dual Itanium processor, 4 GByte RAM and

Gbit/s Ethernet. We use globus-url-copy as the client to the

transfer service in all of our experiments.

A. Simple LRM

The University of Chicago TeraGrid system operates a PBS

LRM with which our prototype can interact. However, the

cluster is generally well used and the wait times for nodes can

be high. As this wait time is entirely dependent on outside

variables, we could not use it in controlled experiments. To

address this problem, we implemented our own simple LRM

for the purposes of experimentation. We then simulated a

compute cluster by leasing TeraGrid nodes from PBS and

using those nodes for our own purposes within our simulated

LRM.

We acquire one node from PBS to be the service provider.

On it we run the GridFTP frontend service, the controller, the

GRAM service, and the simple LRM. An additional set of

nodes is acquired and designated as the compute/transfer

nodes for our simple cluster. One interface to the queue is a

script to be passed to the command line of the job to remotely

run. The node on which the user job will be executed is chosen

via round robin selection. The job is then remotely executed

on that machine via ssh [38]. In order to simulate the nontrivial

queue traversal time that is typically encountered in queuing

systems, the script will sleep before remotely starting the

user’s job. The sleep time is set in a configuration file that can

be changed dynamically.

In addition to providing direct access to our simple LRM by

calling the submission script, we also provide a GRAM

interface. The GRAM ManagedJobFactoryService is designed

to be configured to interact with a variety of LRMs, including

LSF, PBS, and others. We extended it to run against our

simple LRM as well. This way all of the XML messaging

overhead to the simple queue is the same as it would be to any

other queue. The only difference is the remote execution via

ssh versus the proprietary mechanisms used by the specific

LRM.

B. Policies

We evaluate our prototype system using four different

policies, which we now describe. Many other policies can be

imagined (and can be implemented in our architecture); we

choose these policies to provide insight into the efficiency and

applicability of the architecture.

1) Zero Idle

The zero idle policy does not allow a backend node to be

idle for any time. Thus, nodes can neither be pre-fetched nor

cached. Each time a client connects to the frontend service and

requests a transfer, a request for a new backend service

instance is submitted to the LRM. When the transfer completes

the backend service immediately ends and the node it was

running on is released to the LRM for use in scheduling other

jobs. When using this policy, the amount of time it takes to

start a transfer is entirely dependent upon the wait time of the

LRM and amount of time it takes for the notification to reach

the controller.

2) Infinite Idle

The infinite idle policy is the exact opposite of the zero idle

policy in terms of how it handles idle backend services. A set

of backend service instances are started in advance and added

to the transfer pool. They are allowed to be idle for the lifetime

of the frontend service and therefore the nodes on which they

run are never returned to the computational pool. With this

policy there will be idle backend services ready to handle a

client request at all times, until the system reaches maximum

capacity.

3) N-Idle

The N-Idle policy is a simple approach to prefetching and

caching backend transfer nodes. The policy attempts to have N

backend services idle at all times. When the system starts up,

N backend services are created. These backend services are

idle until a transfer is requested. When the transfer is requested

one of the N backend services is immediately allocated to

service the transfer request. Since there are now N – 1 idle

backend services, the controller implementing this policy

requests the creation of a new backend service in an attempt to

maintain N. Since creation of a new backend service takes

time, there will not always be N idle, however the sum of idle

and requested backend services will always equal N.

4) Time Cache

The Time Cache policy allows a backend service to continue

running and servicing transfer requests for the entire wallclock

duration. Unlike the Zero Idle policy which returns the node to

the LRM immediately upon completion of its first and only

transfer request, the Time Cache policy will continue to wait

for additional transfer requests until its lease from the LRM

times out. The assumption is that the time and effort required

to obtain a node from the LRM is greater than that of a single

transfer and thus it is worth caching for its wallclock time. The

maximum amount of idle time is never greater than the

wallclock time.

The first two policies represent two extremes. Infinite idle

represents an optimal policy from the perspective of

connection time. Backend services are always ready, and so

our architecture adds no additional overhead. Infinite idle is

equivalent to the GridFTP proxy server without our

modifications, with backend services statically assigned to a

frontend and always available to it. In contrast, zero idle

provides the worst case scenario for connection time. Since

 8

backend services must be created for every transfer request,

the maximum amount of latency is added to every connection.

Conversely, since backend services are never idle, zero idle

provides the best possible case when minimizing idle transfer

resources, and infinite idle is the worst possible case. These

two policies are base cases for evaluating the architecture.

The N-idle policy is a hybrid of zero-idle and infinite-idle. It

attempts to optimize connection times by having backend

services immediately available for transfers while at the same

time putting an upper bound on idle resources. While the

number of idle backend services is bounded, the number of

working nodes is not, and thus the policy can scale up to

support high transfer loads. Because the value of N is

configurable, the site administrator can decide on an

appropriate balance between idle resources and low

connection times.

Administrators may want more sophisticated policies to

address specific needs. Our architecture provides access to

information that allows arbitrarily complex policies to be

defined, based on intimate knowledge of the transfer service

and a site’s history. We leave the exploration of such policies

for future work.

C. Metrics

We use three criteria to evaluate the system: site bandwidth

utilization, connection time, and user bandwidth. The most

important metric is site bandwidth utilization. Our main goal in

defining this architecture is to use idle network cycles. If we

can provide transfer services with access to large amounts of

bandwidth, we believe existing applications will make use of it

and additional use cases will be discovered, and thus we are

successful. In our experiments we measure bandwidth by

running daemons on the client machines. These daemons read

the raw network usage from the Linux /proc filesystem [39]

and use that information to track the number of bytes the

machine has transferred over the life time of our experiments.

We take samples every second and then post process the

results to calculate bandwidth over the experiments time

interval. Because only our jobs are running on the client

machines we know the bytes transferred are a result of our

experiments. Our goal is to utilize all available bandwidth so

we must count bytes sent under the IP protocol stack. We are

not measuring end to end throughput. If resends are needed by

TCP due to packed loss we count the resends as additional

bytes. Our results would otherwise appear to have used less

network resources than were actually used. This issue has very

little effect because all experiments are done on an under

utilized LAN where packet loss is infrequent.

The second metric is connection time. We define connection

time as the latency from when a client first connects to the

transfer service until the time the transfer begins. Before a

transfer can begin the frontend must find an available backend

service. In the worst case, this time will include the latency of

the WSRF notification message updating the controller that the

frontend services state changed, the entire length of the LRM’s

wait queue, and the latency of the backend service request to

the LRM. This time has the potential to be high and could have

a significant effect on overall system throughput. Further,

while this architecture is targeted at batch transfers, sites may

wish to support interactive transfer services as well, in which

case connection times need to be low. We measure the

connection time with a plug in to globus-url-copy. The time

interval begins immediately before the TCP connect function

is called, and ends when FTP login message “230 User logged

in” [40] is received.

The last metric is achieved user bandwidth. Our goal is to

provide a transfer service that can exploit large amounts of idle

network cycles. In order for this service to be useful, we must

have applications that wish to use it. To make the service

attractive to applications we must be able to service each

transfer request with enough bandwidth to satisfy its needs.

How much bandwidth is needed is a subjective measure.

Ideally the application would be the bottleneck in the transfer

and not the transfer service. As 100 Mbit/s Ethernet cards

become outdated and Gbit/s Ethernet cards become standard,

even on laptops, we aim to provide near Gbit/s transfers to

clients.

VI. RESULTS

We present results for five sets of experiments using our

simple LRM. The first experiment evaluates the validity of the

LRM we used by comparing it to the PBS system used on the

UC TeraGrid. We then measure the connection time as a

function of increasingly heavy loads. This experiment is

designed to analyze the overhead introduced by our system.

We similarly measure the connection time to see how the LRM

wait queue times affect it. Following this we measure how our

various policies behave under lighter, and more naturally

occurring, client loads. The final experiment shows the

bandwidth that our system can consume and the throughput it

can deliver to individual clients.

In all experiments we took care to prevent any one iteration

of tests from affecting the next iteration. For the zero idle and

infinite idle policies this is not a problem. Those two basic

policies are not affected by previous client access patterns.

However, the n idle policy can be greatly affected by previous

access patterns. If a previous test is still holding a backend

service, or if the backend service that was started to replace a

used backend service has not yet begun, our results could be

corrupted. To protect against this, we verified that the system

was in a stable state before running any iteration of our tests.

When one test finished we waited for all resources associated

with previous transfers to be cleaned up and for all requested

backed services to start before we began the next iteration of

tests.

A. Simple LRM Validation

Our first results validate our simple queuing system. Since

we intend that our architecture work with standard and widely

used LRMs such as PBS, we must show that our system

provides a reasonable approximation of the behavior of a

standard system like PBS. The difference in which we are

 9

interested is the amount of time it takes to execute a job once a

node is available. With our simple queue, this is the time it

takes to run ssh, which involves simply connecting to and

authenticating with a daemon on the remote node, and then

executing the job via this connection. To measure this cost we

used ssh to remotely run a dummy job, “/bin/true,” one

hundred times in a row. We took that time and divided it by

one hundred to determine the average.

With a full featured LRM there is much more involved. The

submission program must connect and authenticate with the

LRM’s gateway service. Once the system accepts the

submission it must add the submission to its list of jobs waiting

to run. Then, it must apply its scheduling algorithm to

determine if and where the job can be scheduled. Even in

situations where there are resources immediately available,

these steps can take some time. We measured this time interval

using PBS on the TeraGrid. We took the time when starting

the submission program and again when the job actually

started. This interval defined our access time. We repeated this

one hundred times and again took an average. Because we are

using a live queue we need to make sure that our jobs could be

scheduled right away. We did not want to end up with inflated

times due to a congested wait queue. To accomplish this we

obtained an advance reservation for the node in question, thus

guaranteeing that it was always ready for our job.

The results of these measurements are shown in Table 2.

Since PBS is much more complicated than our simple LRM,

the average access time is orders of magnitude larger. The

simple queue access time is never more than a second while

the PBS, times range from 1 second to 64 seconds with a mean

of 25.28 seconds and a standard deviation of 10.7 sec. To

account for this difference in average times, we have our

simple LRM wait 25 seconds with each submission in addition

to the configured wait time.

Table 2: Queue access times

Queue Avg Time (seconds)

PBS 25.28

Simple queue 0.79

B. Connection Time

The next set of experiments measure the connection time.

We configure our simple queue with four nodes in its resource

pool, and compare performance for three policies: infinite idle,

zero idle using a GRAM interface, and zero idle with direct

access to our simple LRM. Each client request involves a one-

byte file transfer from /dev/zero to /dev/null. This strategy

minimizes the use of the network for file transfer so that

connection time is not disrupted by data transfer traffic, and

eliminates any potential bottlenecks due to filesystem usage.

Figure 4: Connection Time

We evaluate the connection time under an increasing

workload of simultaneous client requests, ranging from one to

thirty-two. This allows us to analyze connection times as they

vary from light client loads to heavy client loads. One client at

a time is the lightest possible load that is interesting for this

experiment. Thirty-two clients with Gbit/s NICs all

transferring at the same time would use over 30Gbit/s of the

bandwidth, which is heavy load on the spectrum in which we

are interested.

The graphs in Figure 4 show the results of this experiment.

While the infinite idle policy overhead grows as the client load

increases, it is never significant. As the graph shows it only

minimally rises above the X-Axis when compared to the other

two and effectively can be considered zero. The difference

between the zero idle policy with GRAM (Zero Idle GRAM)

and zero idle with direct calls to the simple queue (Zero Idle

Direct) expose the latency added by the GRAM Web Service

interface. In both cases, the overhead introduced increases

with client load, however in the direct case the overhead

increased only slightly beyond the wait time in the queue and

in the GRAM case it increases steadily with load. We attribute

this effect to XML serialization within GRAM and the single

point of contact for the queue job submission. This additional

overhead becomes irrelevant as wait times increase. The ease

of use of the GRAM API and the convenience of the

abstraction to many LRMs outweighs the added overhead for

our purposes.

C. Wait Time

We next measure the effects of wait time. Figure 5 shows

the results. As is expected, connection latency increases

proportionately with wait time. Sites that are interested in

providing an immediate and interactive transfer service will

find the usefulness of the architecture decreases as wait time

increases and will therefore be interested in the n-idle policy

described below. Although our architecture is targeted at batch

transfer services, we propose solutions for interactive services

as well. The first and simplest way is to allow preemption. If

 1

the controller can get immediate access to a node by

preempting or suspending other jobs, then the queue wait time

is no longer relevant. While preemption can be handled with

high priorities, and backfilling can allow faster access to the

queue for short running jobs of this nature, it may not provide

immediate access. Suspending running jobs can provide

immediate access; however this is a complicated issue and

typically requires virtual machines. Since this is not always

possible, we use pre-fetching and caching of backend services.

Figure 5: The Effect of Load on Connect Time

We perform the same study using the N-Idle policy and set

N=4. Figure 6 shows the results. The Connect time for up to

four simultaneous clients is low, no matter what the wait time

of the queue. As the number of clients connecting exceeds the

value of N, the connection time increases similarly to the zero-

idle policy yet remains lower on average due to the

immediately available backends servicing up to N requests.

Figure 6: Connection Time for Various Waits

1) Lighter Loads

Many clients connecting at the exact same time constitutes a

heavy load on the system. In practice this situation will

typically not occur: there will be some spacing of client

requests and thus a lower load. In this experiment we measure

the effects of the n-idle and zero idle policies under lighter

client loads.

Figure 7: Lighter Loads

Figure 7 shows the results of an experiment in which we run

various client loads against both the zero idle policy and the

N=4-idle policy. The graph shows the connection time as a

function of the delay between client requests. The zero-idle

policy maintains a steady delay that is equal to the backend

service start time. The N-idle connection times start off high

because the system is overloaded; however they drop off

quickly as the interval between requests increases. As requests

are spaced out enough they allow enough time for previous

requests to finish before the next starts. Recall that the time it

takes to finish a request involves the time through the wait

queue as well as the transfer time. With the N-Idle policy N of

the requests can be serviced immediately and thus finish very

quickly. Once finished the backend service’s node is returned

to the LRM’s compute pool. The backend service that was

started to replace the consumed backend will not be ready until

it works its way through the wait queue.

The point at which the connection time drops significantly

in this case is seven seconds between transfers. The zero-idle

line shows that the node access time is slightly below 30

seconds. With seven seconds between transfers and four pre-

fetched nodes the system has 7*4 = 28 seconds to acquire a

node before a new client will be stalled waiting for it. This

results in the following formula:

N = queue wait time / time between clients

Network load prediction research can be used here to

determine a value for N dynamically as the system runs based

on the expected time between transfer requests.

Instead of looking at the results to find an ideal value for N

we can alternatively look at the ideal time between transfer

requests. If client connection requests are intercepted and

spaced far enough apart, the overall connection time could

improve for short transfer times or for bursts in client transfer

requests. This leaves interesting open questions relating to

transfer time prediction. We leave this for future work.

 1

D. Throughput

As stated, the goal of this proposed architecture is to

maximize bandwidth usage for batch data transfers. The delay

time to the start of the transfer is secondary to maximizing

utilization of available bandwidth. However, the wait time to

acquire a node can affect the overall system throughput. Figure

8 shows this.

Figure 8: Single Client Throughput

In the experiment we used the Zero-Idle GRAM policy and

repeatedly ran a single client transfer request of a 1 GByte file,

one hundred times in sequence. We measured the overall

throughput used by the system as a function of an increasing

queue wait times. The maximum possible bandwidth available

for consumption is one Gbit/s. Our results show that we only

achieve 20% of the maximum with no wait, and as the wait

time increases the bandwidth utilization decreases. The

histograms in Figure 9 provide insight into why. Peak transfer

rates are reached only over the small interval after a backend

service is allocated to a transfer and before the transfer is

finished. The peak times are followed by idle intervals

spanning the wait time plus the connection time. The longer

the wait time, the longer the network idle time and thus the

lower overall throughput.

E. Caching

One approach to eliminating the time gaps between transfers

involves using the Time Cache policy. We demonstrate this

with an experiment using four backends and four client

machines. A client is run on each machine transferring a series

of one Gigabyte files in serial. Each backend service has a

wallclock time of one minute.

Figure 9: Single Client Transfer Histograms

The graph in Figure 10 shows the results of the first 60

seconds of this experiment. Each colored bar represents the

through put achieved by a client machine in a two seconds

time step. Figure 10 shows the network is only idle at the

beginning when we are requesting new nodes. The remainder

of the time the backend services are cached and therefore

ready to perform transfer requests immediately. Were the

experiment to continue on for another minute we would see

another drop in performance as the cached backends wallclock

time expired. This ratio of cached time to fetch time can be

adjusted by requesting longer and shorter wallclock times.

Longer wallclock times will result in higher overall bandwidth

utilization under heavy client loads. Conversely, shorter

wallclock times reduce the potential backend idle time under

light client

loads.

 1

Figure 10: Time Cached Bandwidth

The results of this experiment show that our architecture

performs well according to the bandwidth utilization metric as

it can scale up to network speeds. Figure 10 also shows how

the architecture is measured against the final metric of

achieved user throughput. Each client receives transfer rates of

near gigabit speeds which is the maximum available to it.

VII. CONCLUSIONS AND FUTURE WORK

We have designed and implemented an architecture that

allows computational sites to allocate transfer nodes

dynamically in response to client request load. A site can use

this architecture to utilize more of its network resources

without leaving compute nodes idle. By providing a transfer

service with a significant amount of available bandwidth, sites

can better service their communities and increase their user

base. Further, causing a glut of useable network cycles can

enable existing and future higher level applications to take

advantage of them. We envision this work as a launching pad

for research into such applications.

The majority of related work in this area focuses on storage

system scavenging. Bandwidth usage is a part of a distributed

storage system but when the focus is on the storage as opposed

to the bandwidth itself different attributes get accentuated. Our

goal is to focus strictly on idle bandwidth cycles to enable

present and future applications that move data sets around

effectively, making the network itself a storage system or

capitalize on it for efficient replication. By providing a service

with a scheduled interface to predictable amounts of

bandwidth we can enable an array of applications. Some

examples include:

• Fast Write Services: An application may need to get data

out of its memory buffers as quickly as possible so that more

data can be brought in for processing. The application may or

may not care about the location the final storage point of the

data, because its primary focus is on writing the data to

whatever sink can receive it the fastest. If the fastest endpoint

is not the final endpoint, an out-of-band service can later move

it to its final destination.

• Replica Services: It can be advantageous to have multiple

copies of datasets. Replicas not only provide redundancy in

case of loss but can also assist with load balancing and transfer

optimization. Clients looking to read data can be directed to

any replica, thus lightening the load on other sources. Clients

can also gain performance increases by reading different parts

of the data from multiple replica locations. Applications that

provide these replica services could use the bandwidth we

provide as another point of replication.

• Co-scheduling: The architecture allows for users to

submit backend jobs directly to the LRM. This is an important

aspect of this architecture that warrants additional comment.

This was not directly studied in the experimental studies

section largely because its performance is tied to that of the

run queue and its value is not in connection time or transfer

time but rather in the provided scheduling information. By

allowing users to start their own backends we give them all the

resources and features of the LRM. This includes most notably

start time prediction and notification. Further, once the

backend starts it will have an entire dedicated resource with a

predictable portion of the sites bandwidth. With this

information applications can begin to co-schedule [41] both

sides of the transfer.

Our prototype evaluation has shown that this system can be

effective. It takes advantage of otherwise idle network cycle

without causing unnecessary delays to the compute wait queue.

When faced with heavy client loads our system can

dynamically scale up to peak client transfer demands and

release the resources as the load decreases.

While our system is targeted at batch transfers, for which

connection time is less crucial, our evaluation shows that the

architecture can provided a reasonable interactive service

under moderate client loads. We achieve this performance by

pre-fetching nodes and/or caching nodes by allowing them to

remain idle after completing transfers and before new transfers

start. Idle resources do unnecessarily detract from the compute

queue but we have show how to put limits on the amount of

idle resources without preventing the system from scaling up

under heavier loads.

For batch transfers we have shown that the system can scale

up to high levels of network utilization. Since we used the

zero-idle policy in our experiments the high bandwidth

utilization that we achieved did not come at the expense of idle

computer resources. While we did divert resource from the run

queue for transfers we did not leave them idle.

In the future we would like to study the effects of a steady

pulsing of clients in more detail. As we found in our evaluation

of the n-idle policy, when client transfer requests are spaced

out over time, the connect times drop significantly. We would

like to explore specifically how and why this happens. It is

possible that we could intercept client requests before sending

them to the GridFTP frontend service, and then allow

connections only at regular intervals using token bucket or

some similar algorithm. While this strategy would impose a

delay on the connection time, the delay may be low, regular,

 1

and predictable, and thus acceptable. A key aspect of this

study involves predicting transfer times.

In additional future work we plan an in depth study of

various caching policies. The effects of caching policies on

wait time and idle time under a variety of real and simulated

client loads would grant further insight into the usefulness of

this architecture. As the production systems use this

architecture we can simulate actual work loads from system

logs to complete this study.

We would also like to explore this problem from a different

perspective. Instead of starting a backend service on a node

and fully utilizing all of the node’s resources, we could attempt

to share co-located transfers and user jobs on a single node. As

we noted earlier, at full transfer speeds co-location is too

disruptive. However, if our transfer rates were throttled down

so that their network and CPU utilization did not noticeably

detract from a user’s job, we could indeed co-locate them. One

way to accomplish this is to set a maximum bandwidth cap to a

rate significantly lower than the nodes NIC speed. This will

prevent the network card from being over utilized and also

prevent the CPU from being overloaded with packet switching

tasks. Since the bandwidth of any one node will be greatly

limited we will use many nodes in a coordinated striped

transfer to achieve higher throughput rates.

Finally, we plan to enhance our system to take advantage of

GridFTP’s striped transfer abilities. In the system presented in

this paper we allocate a single backend service instance to

every data transfer request. To provide an immediate service to

clients we will allocate two backend service instances to each

transfer request. The first will be shared by all transfers. It will

be running at all times waiting for to service requests. This will

allow for transfers to immediately start but because the node’s

NIC will be shared by all, the transfer rates will be low. A

second backend service instance will be acquired from the

LRM and added as a second stripe when it begins execution.

While waiting for the second to start some progress on the

transfer can be made and when it does start transfer rate will

be at full speed. This feature will allow for significant

improvement over connection times and slight improvements

in transfer performance.

REFERENCES

[1] “TeraGrid web page,” http://www.teragrid.org.

[2] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D.

Noveck, D. Robinson, and R. Thurlow, “The NFS Version 4 Protocol,”

2000. [Online]. Available: citeseer.ist.psu.edu/shepler00nfs.html

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A

Parallel File System for Linux Clusters,” in Proceedings of the 4th

Annual Linux Showcase and Conference. Atlanta, GA: USENIX

Association, 2000, pp. 317–327. [Online]. Available:

citeseer.ist.psu.edu/294296.html

[4] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for

Large Computing Clusters,” in Proc. of the First Conference on File and

Storage Technologies (FAST), Jan. 2002, pp. 231–244. [Online].

Available: citeseer.ist.psu.edu/schmuck02gpfs.html

[5] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, B. Moe, “Wide

Area Data Replication for Scientific Collaboration,.” in Proceedings of

6th IEEE/ACM International Workshop on Grid Computing (Grid2005),

November 2005.

[6] D. Wessels and K. Claffy, “ICP and the Squid Web Cache,” IEEE

Journal on Selected Areas in Communication, vol. 16, no. 3, pp. 345–

357, 1998. [Online]. Available: citeseer.ist.psu.edu/wessels97icp.html

[7] IPerf. http://dast.nlanr.net/Projects/Iperf.”

[8] “globus-url-copy”

http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.html

[9] J. Bresnahan, R. Kettimuthu, and I. Foster, “XIOPerf : A Tool for

Evaluating Network Protocols,” in Proceedings of the Third

International Workshop on Networks for Grid Applications, 2006.

[10] “Netperf.” http://www.netperf.org/netperf/NetperfPage.html .

[11] “GT4.0:GridFTP:”

http://www.globus.org/toolkit/docs/4.0/data/gridftp/”

[12] 12 K. Czajkowski, D. F. Ferguson, J. F. I. Foster, S. Graham, I.

Sedukhin, D. Snelling, S. Tuecke, and W. Vambenepe, “The WS-

Resource Framework,” 2004.

[13] S. E. Shadan, B. H. Far, and J. Cheng, “Dynamic Mirroring for Efficient

Web Server Performance Management,” The IEICE Transactions on

Communication, vol. E85-B, no. 8, pp. 1585–1595, 2002.

[14] S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi,

and S. L. Scott, “Freeloader: Scavenging Desktop Storage Resources for

Scientific Data,” in SC ’05: Proceedings of the 2005 ACM/IEEE

conference on Supercomputing. Washington, DC, USA: IEEE

Computer Society, 2005, p. 56.

[15] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of the MAUI

Scheduler,” Lecture Notes in Computer Science, vol. 2221, pp. 87–??,

2001. [Online]. Available: citeseer.ist.psu.edu/jackson01core.html

[16] A. W. Mu'alem and D. G. Feitelson, "Utilization, Predictability,

Workloads, and User Runtime Estimates in Scheduling the IBM SP2

with Backfilling ". IEEE Trans. Parallel & Distributed Syst. 12(6), Jun

2001.

[17] L. Yang, J. Schopf, and I. Foster, “Conservative Scheduling: Using

Predicted Variance to Improve Scheduling Decisions in Dynamic

Environments,” 2003. [Online]. Available: citeseer.

ist.psu.edu/yang03conservative.html

[18] W. Smith, V. Taylor, and I. Foster, “Using run-time predictions to

estimate queue wait times and improve scheduler performance,” in Job

Scheduling Strategies for Parallel Processing, D. G. Feitelson and L.

Rudolph, Eds. Springer Verlag, 1999, pp. 202–219.

[19] W. Smith, I. Foster, and V. Taylor, “Predicting Application Run Times

Using Historical Information,” Lecture Notes in Computer Science, vol.

1459, pp. 122–??, 1998.

[20] S. Vazhkudai and J. M. Schopf, “Using Disk Throughput Data in

Predictions of End-to-End Grid Data Transfers,” in GRID ’02:

Proceedings of the Third International Workshop on Grid Computing.

London, UK: Springer-Verlag, 2002, pp. 291–304.

[21] S. Vazhkudai and J. Schopf, “Predicting Sporadic Grid Data Transfers,”

2002. [Online]. Available: citeseer.

ist.psu.edu/vazhkudai02predicting.html

[22] R. Wolski, “Dynamically Forecasting Network Performance Using the

Network Weather Service,” Cluster Computing, vol. 1, no. 1, pp. 119–

132, 1998.

[23] Keahey, K., I. Foster, T. Freeman, X. Zhang, D. Galron, “Virtual

Workspaces in the Grid”, Europar 2005, Lisbon, Portugal, September,

2005.

[24] R. L. Henderson, “Job Scheduling Under the Portable Batch System,” in

IPPS ’95: Proceedings of the Workshop on Job Scheduling Strategies

for Parallel Processing. London, UK: Springer-Verlag, 1995, pp. 279–

294.

[25] S. Zhou, “LSF: Load Sharing in Large-Scale Heterogenous Distributed

Systems”. In Proc. Workshop on Cluster Computing, 1992.

[26] IBM Corporation, IBM LoadLeveler: User’s Guide, 1993.

[27] “GT4.0WS_GRAM,”

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/

[28] W. Smith, I. Foster, and V. Taylor, “Scheduling With Advanced

Reservations,” pp. 127–132.

[29] “The Globus Toolkit. http://www.globus.org/toolkit .”

[30] 30 “Gridftp : System Administrator’s Guide.

http://www.globus.org/toolkit/docs/4.0/data/gridftp/admin-index.html .”

1

[31] 31 I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security

Architecture For Computational Grids,” in 5th ACM Conference on

Computer and Communications Security Conference, 1998, pp. 83–92.

[32] 32 G. Geist, J. Kohl, and P. Papadopoulos, “Cumulvs: Providing Fault

Tolerance, Visualization, and Steering of Parallel Applications,” 1996.

[33] 33 P. Dinda and D. O’Hallaron, “An Extensible Toolkit for Resource

Prediction in Distributed Systems,” 1999.

[34] 34 R. Wolski, “Dynamically Forecasting Network Performance Using

the Network Weather Service,” Cluster Computing, vol. 1, no. 1, pp.

119–132, 1998.

[35] 35 “A Monitoring and Steering Framework Using WS C Core,”

http://www-unix.mcs.anl.gov/ bresnaha/gmonsteer.pdf.

[36] 36 “GT 4.0: C ws core.

http://www.globus.org/toolkit/docs/4.0/common/cwscore/index.pdf

[37] 37 I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations,” Int. J. High Perform.

Comput. Appl., vol. 15, no. 3, pp. 200–222, 2001.

[38] 38 “Openssh,” http://www.openssh.com/

[39] 39 “An Overview of the Proc Filesystem,

http://linuxgazette.net/issue46/fink.html .”

[40] 40 “RFC 959 - File Transfer Protocol,

http://www.faqs.org/rfcs/rfc959.html”

[41] 41 K. Czajkowski, I. T. Foster, and C. Kesselman, “Resource

Coallocation in Computational Grids,” in HPDC, 1999.

