
 1

  

Abstract—Modern high-performance computers are often 

implemented as clusters. A cluster is comprised of several 

machines, each representing a compute node. Local resource 

managers are used to grant access to these nodes. Once access is 

granted to a node, a user has exclusive access to the entire node 

including its local filesystem and network interface. In addition to 

serving as a computational cluster, these sites are often highly 

connected to a network: for example, sites participating in the US 

TeraGrid system have between ten and forty gigabits per second 

of available bandwidth and each computational node in a 

TeraGrid cluster typically has a one gigabit per second network 

interface. However, since it is a compute cluster, jobs are often 

computationally bound, in which case most of this bandwidth is 

unused. 

In order to stage in and out data sets, or to publish 

computational results, sites provide file transfer services. 

Achieving peak transfer speeds requires a significant number of 

nodes. Packet switching at top speeds put a load on a CPU that 

prohibits locating user compute jobs and site transfer processes 

on the same node. Thus, administrators partition their resources 

into compute nodes and transfer nodes. Due to fluctuating 

transfer requirements and the desire to avoid idle resources it is 

difficult to determine this partition statically. Ideally, the 

partitioning could be adjusted dynamically to suit immediate 

needs. 

This paper studies this dynamic resource partitioning problem. 

We propose an architecture that allows transfer nodes to be 

acquired from the computational queue when needed, and 

returned when no longer required. The site administrator has a 

means to set a policy regarding how long a transfer node can be 

idle before being returned, and when to request additional nodes. 

We measure the costs associated with a prototype implementation 

of this architecture and study the impact of different policies on 

achieved performance 

Index Terms—GridFTP, Dynamic Resource Allocation, 

Backend 

I. INTRODUCTION 

Science has many computationally intense problems. To 

foster research, so-called “space shared, batch scheduled” 

systems have been developed that allow many users to obtain 

dedicated access to powerful computer processors, or nodes, 

via local resource managers (LRMs). An LRM is an interface 

                                                           
  

to a run queue. LRMs allow jobs shared exclusive access to 

system resources. A user requests a certain number of nodes 

and the required wallclock time, and then waits until their 

request is serviced. Once the LRM can fulfill the request, the 

user’s job may use 100% of the resources associated with the 

allocated nodes. 

On modern computational systems, like the TeraGrid [1], it 

is common that such systems are implemented as Linux 

clusters. Each compute node is a full Linux system. When a 

user gains access to a node, they acquire exclusive use of the 

entire Linux machine and all of its devices, including the 

network interface card (NIC) and filesystem. Despite such 

systems being mainly targeted at computationally bounded 

jobs, their network connectivity is typically quite good. In the 

case of TeraGrid clusters, each node has its own Gbit/s NIC 

that connects to a 10Gbit/s switch. 

Jobs make use of the network by staging in data sets for 

processing and staging out results for analysis. Jobs also 

perform I/O using any of several network and parallel file 

systems such as NFS [2], PVFS [3], and GPFS [4]. Jobs may 

also establish local and wide area network connections to 

service application-specific needs. However, most jobs are 

CPU-bound, and thus a cluster typically does not use all 

available bandwidth simply to service the needs of general 

user jobs submitted to the queue. For example, the TeraGrid 

publishes the network utilization of their routers at 

https://network.teragrid.org/. Rarely are peaks of a twenty 

second average over 2 Gbit/s, and the majority of the time the 

network is idle. 

Clusters also commonly run data transfer services so that 

external clients can access data stored on file systems attached 

to the cluster. This external access may be used, for example, 

to enable community access to result sets. On TeraGrid, 

GridFTP is used as the primary data transfer service because 

of its high performance and scalability: the Globus GridFTP 

implementation can easily scale to the 30-40Gbit/s of external 

bandwidth available at some TeraGrid sites—if sufficient 

nodes can be dedicated to data transfer tasks. However, 

because each individual node has only a 1 Gbit/s NIC, in order 

to fully utilize a 40 Gbit/s network, forty nodes must 

participate in a transfer with 100% of their NIC. In practice, 

An Architecture for Dynamic Allocation of 

Compute Cluster Bandwidth  

John Bresnahan
1,2,3

, Ian Foster
1,2,3 

 

1
Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 

2
Computation Institute, University of Chicago, Chicago, IL 60637 

3
Department of Computer Science, University of Chicago, Chicago, IL 60637 

 

{bresnaha, foster}@mcs.anl.gov 



 2

sites are reluctant to dedicate that number of nodes to data 

transfer tasks, given that it is only occasionally that external 

clients require this data transfer rate. Thus, innovative uses of 

TeraGrid clusters, such as network replication applications, 

proxy applications, and transfer applications such as DRS [5] 

and SQUID [6], cannot be supported. 

One solution to this problem is to dedicate nodes to the data 

transfer service. However, unless the site is constantly in need 

of peak data transfer requirements, some of these nodes will be 

idle. Typically, peak data transfer requirements are short lived. 

Assuming that the LRM always has some jobs in the wait state 

(which is typical for successful compute sites), this leads to a 

situation where the site has job requests waiting even though 

there are idle resources on which they could run. Since these 

idle resources could be diverted to servicing computational 

jobs, again the wait times are artificially long. 

Another solution is to use a node for the data transfer 

service while that same node is servicing a user’s job. 

However this approach is also not ideal. On modern 

processors, packet switching at gigabit rates requires a 

significant amount of the CPU. When any type of security 

processing, like packet signing or encrypting, is used the 

problem is greatly exacerbated. On a dual Itanium-64 1.5GHz 

UC TeraGrid node, we ran transfer tests for ten seconds and 

measured the CPU load using some common performance 

benchmarks: iperf [7], globus-url-copy [8], globus-xioperf [9], 

and netperf [10]. The results are shown in Table 1. In the best 

case, 8% of the CPU was used which is a nontrivial amount if 

the user is expecting a dedicated resource. Users who have 

acquired nodes from the queue have an expectation of 

exclusive access to the node’s resources, co-locating a high 

performance transfer with a user’s job would not only deny the 

user network cycles that they may require, but also CPU and 

memory bus cycles.   

 

Table 1: CPU load imposed by different network 

benchmarks 

Benchmark CPU Load (%) Transfer Rate (Mbit/s) 

netperf 8 990 

iperf 10 990 

globus-url-copy 13 944 

globus-xioperf 11 944 

globus-xioperf (gsi integrity) 79 99 

globus-xioperf (gsi private) 88 40 

 

The correct solution to this data transfer problem, we 

believe, is to allow nodes to be transferred dynamically, in an 

on-demand fashion, between a pool of compute resources and 

a pool of data transfer resources. When data transfer 

requirements increase, nodes can be transferred from the 

compute pool to the data transfer pool; when the transfer load 

drops, or perhaps when the compute load increases, nodes can 

be returned to the compute pool and again used to service 

computational requests. In this way, we ensure that there are 

never idle resources when job requests (or data requests) wait 

to be serviced.  

This paper proposes an architecture that allows such a 

dynamic partitioning of transfer nodes and compute nodes. We 

present an architecture that can work with any standard LRM 

on a computational cluster. We propose extensions to the 

Globus Toolkit(tm) GridFTP server [11] and develop 

implementation techniques to support this architecture. We use 

monitoring interfaces defined by the Web Services Resource 

Framework (WSRF) [12] to observe the state of the 

architecture in a non-disruptive and modular way, and allow 

site administrators to set policies controlling the partitions in a 

modular fashion. We performance test a prototype system to 

determine costs associated with our approach. 

II. RELATED WORK 

We review work that has overlapping concepts and solves 

similar problems to that of dynamic allocation of compute 

cluster bandwidth. The majority of such work focuses on 

storage space or CPU scavenging.  We also look at concepts in 

queuing theory. Because we are allocating resources to user 

requests there is overlap with queuing research. Additionally 

we review work regarding load predictions for both network 

transfers and computational jobs. 

Shadan et al., in their paper “Dynamic Mirroring for 

Efficient Web Server Performance Management” [13], propose 

a solution for dynamically mirroring of web servers. In their 

approach, they have a set of cooperative web servers. As the 

main server’s load gets unacceptably high, they transfer some 

portion of the data to a selected mirror site. This work 

introduces interesting concepts for WAN replication, but that 

is not the goal of our research. In our work we decouple a 

transfer resource from a storage resource. Further, they assume 

a static set of mirror servers and do not allow for a growing 

and shrinking pool of resources, which is an important part of 

our work. 

Freeloader [14] is a distributed storage scavenging system. It 

takes advantage of unused desktop storage and available 

bandwidth to create a distributed storage cache for read only 

data. Freeloader asserts that desktop machines do not have the 

storage capacity to store large scientific data sets on local disk 

in their entirety, yet at the same time at least half of the local 

disk is typically empty. Its goal is to harness all empty disk 

space at a site into a single data cache with little additional 

expense. The work we present here shares the ideas of 

reclaiming idle bandwidth, and the idea of providing 

additional I/O power at little additional cost to the site; 

however we are not investigating storage systems. Our focus is 

on high utilization of network resources. 

Domain Name Service (DNS) has a load balancing feature. 

It can be used to share host load by mapping server physical 

machines to the same domain name. Clients send the DNS a 

domain name, and the DNS returns to them an IP address. 
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When DNS-Round-Robin is in place, several IP addresses are 

mapped to the same domain name. The IP address that the 

DNS chooses to respond with is selected in a round robin 

fashion. While effectively distributing the physical machines to 

which a client connects, it does not distribute load. A client 

may lookup a server and not use it for a transfer, in which case 

some servers will be used for transfers more often than others. 

In our approach we only seek out a transfer node when we 

have a transfer request, therefore we have a good idea of the 

load it will incur. More importantly, the DNS approach does 

not take into account sharing of computational and transfer 

resources in a dynamically changing environment. 

Our work overlaps with concepts prevalent in queuing 

theory. We are allocating resources to support a user load 

which is the fundamental problem that queues are designed to 

solve. Our work is not researching into the field of queuing 

theory. We are rather acting as a user of it from a layer above. 

However, it is important for us to understand how we are 

affected by some of its fundamental concepts. Additionally, 

ongoing work in this field will allow some important 

extensions to the architecture we propose here. 

The backfill algorithms described in “Core Algorithms of 

the MAUI Scheduler” [15] and "Utilization, Predictability, 

Workloads, and User Runtime Estimates in Scheduling the 

IBM SP2 with Backfilling" [16] play a role in node acquisition 

for our system. The proposed architecture will perform best 

when nodes can be obtained quickly. Further, most transfer 

jobs run for a relatively short amount of time. These two 

characteristics dovetail well into backfill. A queue maintains a 

list of jobs that it orders according to priority. To prevent 

starvation, the order in which the jobs are requested plays a 

strong role in this priority. The scheduler then matches jobs 

with nodes. Higher priority jobs receiver earlier start times. 

Since requests vary in wallclock time and number of nodes 

required, the process inevitably leaves time gaps between jobs. 

Backfilling searches the remaining lower priority job to find 

those that can fit into these time gaps. This can result in lower 

priority jobs running before higher priority jobs, but it does not 

delay any job from its originally scheduled time, it simply uses 

what would otherwise be idle time. Naturally jobs which 

request a small number of nodes and a short wallclock time are 

able to fit into the most gaps and thus have a higher likelihood 

of running at an earlier time. Our architecture takes advantage 

of this by always requesting the smallest number of nodes, and 

a relatively short wallclock time. 

There has been much research on predicting resource load 

requirements [17] [18] [19], including network loads [20] [21] 

[22]. Our system can benefit from this work. If we were able to 

predict network loads quickly and accurately enough, we could 

set resources aside ahead of time for network traffic spikes. To 

allow for this possibility, we have designed into our 

architecture a way for prediction algorithms to be implemented 

in a natural and modular fashion. We discuss this topic when 

we introduce the controller program.  

Fast access to nodes is one challenge that our architecture 

faces. We cannot instantly obtain a node because a user’s job 

may be running on it. Therefore we must wait for a job to 

complete before the scheduler will even consider granting 

access to our system. Ideally we could suspend any running 

job, use its node for a transfer, and then restart that user’s job 

when we are finished, all without disrupting the job or denying 

it wallclock time. Research into virtual machines [23] can be 

used to achieve this. By running each job in a virtual machine 

the entire system state can be suspended and even migrated to 

another host. As this research advances we expect it to provide 

solutions for immediate node access. 

 

III. ARCHITECTURE 

Recall that our goal is to define an architecture which allows 

well connected computational clusters to service bandwidth 

greedy applications without incurring the cost of dedicated 

resources. We propose a modular architecture that uses as 

many existing components as possible. Monitoring software is 

used to observe the state of the stock components and provide 

enough information so that policy decisions can be made in a 

separate and noninvasive process. Our architecture defines the 

following components: 

Nodes: Nodes are full computer systems complete with their 

operating system, CPU, memory, disk and NIC.  A typical 

example is a PC running Linux. Nodes are used for servicing 

user requests. They must be appropriate for both computation 

and transfer with fast NICs (e.g., gigabit Ethernet cards) and 

fast modern CPUs. Nodes should have access to a shared file 

system. This is a common description for most computational 

clusters, as on the TeraGrid. 

LRM: An admission control queue that has its own means 

for setting policy for granting access to nodes. The ability to 

set high priority in order to preempt jobs that have waited 

longer in the queue, and the ability to suspend running jobs are 

important features but not mandatory. Common examples of 

such LRMs are PBS [24], LSF [25], MAUI, and LoadLeveler 

[26]. A GRAM [27] interface to the LRM is recommended. 

Transfer Service: This is the component responsible for 

transferring data in and out of the cluster. The transfer service 

comprises a frontend service and a set of backend services. 

The frontend service acts as a contact point for clients, and as 

a load balancing proxy to the backend services which move the 

data. Backend services run on nodes acquired from the LRM. 

The frontend must be instrumented with monitoring software 

so that an external process can observe its state to make 

decisions based upon the load. 

Controller: This component is the brain of the system. It 

observes the frontend transfer service to determine when client 

load is high or when the backend transfer node pool is idle, at 

which point it interacts with the LRM to either acquire a new 

node for use in data transfer or release an idle node from the 

transfer pool back into the computational queue. The 

controller’s decisions are based upon a policy set by the site 

administrator.  
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Figure 1 shows how these components interact. Clients 

contact the frontend transfer service with transfer requests. The 

frontend goes to the transfer node pool to find an available 

backend service. The backend service with the lowest load is 

selected to perform the transfer. If there is no available 

backend service, or all are too busy, the frontend waits for 

some amount of time and then asks again. The client is stalled 

on this process but is free to timeout without disturbing the 

system. 

The controller observes the state of the frontend service. 

When the client load exceeds the available resources in the 

transfer pool, the controller requests a new backend service 

from the LRM. The faster this request can be serviced, the 

better the overall system’s performance. Ideally, the controller 

would have special privileges allowing it to acquire nodes 

immediately, for example by suspending current user jobs or 

preempting other jobs that have waited longer. Typically 

transfers do not require large amounts of time so nodes 

acquired in this way could be returned to the compute pool 

quickly. 

 

Figure 1: Component Interaction 

In the absence of, or in addition to, special rights to the 

queue, the controller program can implement “caching” or 

retention policies, meaning that it holds nodes for some time 

before returning them. Similarly, “prefetching” policies can be 

implemented that attempt to ensure that there are always idle 

transfer nodes available: as resources in the transfer pool are 

consumed, additional nodes can be requested from the LRM. 

More sophisticated logic can also be implemented: for 

example, we might observe the state of the frontend service 

over a long time and make assumptions and predictions about 

client load spikes. The controller can also access log files and 

databases at the administrator's discretion. The optimal 

policies may be site specific, so it is crucial to the architecture 

that the administrators have a means to set sophisticated policy 

in ways suited to their specific needs.  

The architecture provides another important source of 

flexibility. A client can interact directly with both the LRM 

and the frontend service.  Using their own credentials and 

submission rights clients can request the same standard 

backend service that the controller requests from the LRM.  

The client can then request a transfer from the frontend service 

specifically requesting use of its backend  service.  Once that 

backend service has worked its way through the LRM’s wait 

queue, the frontend will select it and the client’s transfer will 

begin.   

This feature allows the site to directly harness client 

knowledge. The clients know what transfer load they require. 

In this way they ask for resources directly from the LRM, 

therefore they gain access to transfer nodes in a fair and 

managed way. Further they maintain all of the conveniences of 

a standard transfer service interface because they are not 

required to stand up their own custom transfer services. If the 

user needs specific resources and times dedicated to their 

transfer they can arrange advanced reservations [28] in the 

same familiar manner as they would for any compute job. 

Further most LRMs have mechanisms to provide approximate 

start times. This can be useful information to transfer 

applications that need resource guarantees. This feature 

effectively provides a mechanism for scheduling data transfers. 

By running backend services directly from the LRM, instead 

of via an intermediate provisioning service (like the frontend 

and controller) all of the features of the LRM can be 

leveraged. Scheduling the transfer with fair sharing to site 

resources is then controlled in a more appropriate place, as is 

load prediction and security audit trails. 

IV. IMPLEMENTATION DETAILS 

Our proposed architecture allows a site to use any LRM and 

node configuration that it already has in place. Our goal is to 

provide existing computational sites with insight into how they 

can better leverage their available bandwidth. An important 

subgoal is to be minimally disruptive to the existing system. 

The only new components that we require to implement this 

architecture are the transfer service and the controller. 

A. Transfer Service 

For the transfer service we use the GridFTP server released 

with the Globus Toolkit [29]. This versatile piece of software 

can be configured to run in a variety of modes [30]. For this 

paper we used the separation of processes mode, which means 

essentially that we configure it as a proxy server. A frontend 

service acts as the contact point for clients wishing to initiate 

data transfers; this service does not do any of the actual 

transporting of data. The actual shipping of bits is left to the 

backend services. The frontend and backend services 

communicate with each other via an internal protocol 

(typically over a LAN), which allows processes to be on 

different machines. The backend services are workers for the 

frontend and perform operations as they are directed. 
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Figure 2: Separation of Processes 

As shown in Figure 2, this setup allows the frontend service 

to select from a set of backends. All backend services have 

access to the same network and parallel filesystem and thus are 

functionally equivalent. In the current GridFTP 

implementation, incoming requests are allocated to backends 

in a round robin fashion. In effect, the frontend service acts as 

a load balancing proxy server. It is also free to select many 

backend services for use in a single transfer, in which case it 

divides the request by the number of selected backends and 

forwards the divided requests along appropriately. This feature 

is called striping. It is possible to mix striping and load 

balancing, but for simplicity we focus here on load balancing 

and reserve striping for future work. 

B. GridFTP Modifications 

The standard GridFTP server implementation requires that 

the frontend be given a static list of backend services. These 

are the only backends with which the frontend can 

communicate, and the list must be known at the time the 

frontend is started. Because we wish to create a system in 

which the pool of backends shrinks and grows throughout the 

frontend’s lifetime, we had to extend the GridFTP server. 

 Specifically, we modified the frontend service to listen for a 

connection on a given TCP port. When a connection is made, 

the remote peer is authenticated via GSI [31]. If access is 

granted, the peer can register a new backend service with the 

frontend service. The newly registered backend service is now 

an available resource to be used in the proxy server setup. A 

timeout is associated with this registration. If no 

communication with the specified backend service occurs 

before the timeout, it is removed from the list of available 

resources. Similarly if an error occurs when communicating 

with the backend service, it is removed from the list of those 

available. In addition to registering services, a peer can also 

refresh or cancel an existing registration. The refresh allows 

idle backend services to remain in the available list and serves 

as a heartbeat monitor. 

When clients requests transfers of the frontend, there must 

be at least one available backend or the transfer will fail. 

Additional modifications were made to cause the frontend to 

check repeatedly for available backends after a configurable 

delay. This functionality allows a client to use a backend that 

became available subsequent to the initial transfer request. 

C. Monitoring 

In order to monitor the internal state of the GridFTP server, 

we needed to instrument it with monitoring software similar to 

that described in CUMULVS [32]. We required that this 

monitoring software be minimally invasive and that it provide 

a network interface for observation. It is not acceptable for a 

monitored GridFTP server to be significantly slower or less 

robust than a non-monitored server. Observation via a remote 

process over a network interface allows experimentation with 

various policies without the risk of crashing or hanging the 

GridFTP server. 

Each site has varying levels of logic needed to express its 

partition policies. Rather than using a specific policy language, 

we define the transfer service monitoring interface and a LRM 

submission interface, and leave it up to a specific site 

administrator to implement a controller process in whatever 

form is convenient. Languages such as Python, Java, and C can 

also be used to express logical policies. Further this allows 

maximal flexibility and full use of all available knowledge 

sources, including system logs, databases, and prediction 

toolkits [33] [34]. Since system administrators will be writing 

these scripts, it is important that it is easy to use the interfaces 

to both the transfer services internal state and to the LRM. 

For these reason we followed the approach taken in 

GMonSteer [35] for monitoring the transfer service and 

GRAM as the LRM interface. We use WSRF by embedding a 

WS C Core hosting environment into the GridFTP server. 

Controller programs are written as clients to this service. 

Before we can explain the details of how this was done a brief 

discussion on WSRF is required. 

D. WSRF 

WSRF introduces the concept of a resource into the web 

services world. A resource is a collection of data types 

represented by user-defined XML. In overly simplistic (yet 

didactically useful) terms, the data representing the resource 

lives in the service. Along with the resource, WSRF provides 

some useful methods for accessing the state of the resource. A 

client can get the values of any elements of the resource by 

making a SOAP call to the GetResourceProperty operation. 

Additionally, a client can subscribe for notification of changes 

to a given resource. If we are working in a pull paradigm, a 

client may poll for changes using GetResourceProperty, and if 

we are in a push paradigm, the service signals the clients of 

data changes, via the notification mechanisms.  

Web Services provides clients access to operations. 

Operations are remote method calls that a Web Service allows 

clients to invoke via SOAP. The resource and the operations 

associated with it are described in an XML document format 

called Web Services Description Language (WSDL). Stubs are 
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created from the WSDL which makes client interaction with 

the service as easy as making a local function call. More 

information on WS C and WSRF can be found in the WS C 

Core web pages [36] and in “The Anatomy of the Grid: 

Enabling Scalable Virtual Organizations,” [37]. 

E. The Embedded Service 

We identify the following list of internal state the frontend 

service must expose to the controller: 

• Current client connections: The number of clients 

currently requesting or performing transfers. 

• Max client connections: The maximum number of clients 

allowed to connect simultaneously. 

• Available Backend Services: The number of backend 

services ready for use. 

• Approximate load of each backend: a percentage 

associated with each backend that approximates how hard it is 

working. 

We defined these states in a WSRF compliant WSDL 

document as resource properties. The WSDL documents 

serves as an interface definition for both clients and services. 

We use it to generate stubs for the controller programs and 

also to create a service for exposing these resource properties. 

Because it is important for the service to be light weight and 

have very low overhead interactions with the frontend service 

we used WS C Core. 

WS C Core is a light weight hosting environment that can 

be embedded into the GridFTP frontend service. WS C Core 

compiles to native code allowing it to be linked into existing 

applications. From the WSDL we generate C bindings which 

handle the conversion of SOAP messages into C data 

structures. Using the bindings we create an embeddable 

service that observes the internal state of the GridFTP server 

and sets the resource properties appropriately as the state 

changes. The service is linked into a shared library which is 

loaded at runtime in the presence of an option. If loaded, the 

WS service starts providing information; if not loaded, the 

GridFTP server is left entirely unaffected. 

F. Controller 

The controller is a client to the embedded service. Via 

WSRF, it gets notifications from the frontend service when 

any of the resource properties defined above change. Stubs are 

generated from the WSDL that make each notification a 

simple function call. When a client connects or disconnects, or 

when a backend is added or removed from the transfer pool, or 

when the frontend service’s exposed state otherwise changes, 

the controller is notified asynchronously. It then uses this 

information to decide when to start new backend service 

instances and when to kill existing ones.  

The controller also observes the amount of time that any 

backend is idle and may, depending on the policy that it 

implements, decide to kill the backend service so that the 

associated node can be returned to the compute resource pool. 

The GridFTP server is fault tolerant and can handle 

unexpected backend service termination. Termination of one 

backend has no effect on any other, nor does it affect the 

frontend service. However, it may leave a client that requested 

a transfer with an error. Such errors are not a problem since 

GridFTP transfers can be restarted in such a way that little data 

needs retransmission.  

The controller uses GRAM to start up new backend service 

instances via the LRM. GRAM is used because it is a 

convenient and easy to use interface to many different LRMs. 

The ease of use is important for enabling the creation of site 

specific policies. With GRAM starting up a new backend is a 

simple function call available in many programming 

languages. Additionally GRAM is a network protocol which 

allows the controller to run on an entirely separate system from 

that of the LRM. No CPU cycles or other resources are 

diverted from the frontend and thus we can expect that the 

performance of the transfer service will be minimally affected. 

 

Figure 3: Event Sequence 

Figure 3 shows the event sequence of our architecture. A 

client connects to the frontend service and requests a transfer 

(line 1). If an unused backend service instance has already 

been registered with the frontend service it is used, if not the 

frontend waits for one to be registered. The controller receives 

a WSRF notification when the client connects telling it that the 

state of the frontend service has changed (line 2). The 

controller may then use the GRAM interface to the LRM to 

start up a new instance of a backend service (line 3). The 

newly requested backend service will not start immediately, 

and the time it takes to start will vary with contention in the 

LRM’s wait queue. When it does start, it registers itself with 

the frontend service (line 5). The frontend service can now use 

it and the clients can begin transferring data (line 6).  

The decision as to when to start up a new backend service 

instance is entirely up to the logic of the controller. In some 

cases the controller will wait until a client request prompts the 

need for a new backend. In other cases it may start a new 

instance based on a prediction algorithm guessing that a 

transfer request will be made in the near future. Its modular 

placement in the architecture allows it to be noninvasive to the 
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rest of the system. It simply observes the running state and 

injects new resources when its policy allows. 

V. EXPERIMENTAL STUDIES 

To establish a proof of concept for this architecture we 

developed a prototype system. We implemented all 

modifications to the GridFTP server specified above. We 

created controllers to implement some basic policies, 

described in detail below. All tests were run using the 

University of Chicago TeraGrid system, in which each node 

has a 1.5GHz Dual Itanium processor, 4 GByte RAM and 

Gbit/s Ethernet. We use globus-url-copy as the client to the 

transfer service in all of our experiments. 

A. Simple LRM 

The University of Chicago TeraGrid system operates a PBS 

LRM with which our prototype can interact. However, the 

cluster is generally well used and the wait times for nodes can 

be high. As this wait time is entirely dependent on outside 

variables, we could not use it in controlled experiments. To 

address this problem, we implemented our own simple LRM 

for the purposes of experimentation. We then simulated a 

compute cluster by leasing TeraGrid nodes from PBS and 

using those nodes for our own purposes within our simulated 

LRM. 

We acquire one node from PBS to be the service provider. 

On it we run the GridFTP frontend service, the controller, the 

GRAM service, and the simple LRM. An additional set of 

nodes is acquired and designated as the compute/transfer 

nodes for our simple cluster. One interface to the queue is a 

script to be passed to the command line of the job to remotely 

run. The node on which the user job will be executed is chosen 

via round robin selection. The job is then remotely executed 

on that machine via ssh [38]. In order to simulate the nontrivial 

queue traversal time that is typically encountered in queuing 

systems, the script will sleep before remotely starting the 

user’s job. The sleep time is set in a configuration file that can 

be changed dynamically. 

In addition to providing direct access to our simple LRM by 

calling the submission script, we also provide a GRAM 

interface. The GRAM ManagedJobFactoryService is designed 

to be configured to interact with a variety of LRMs, including 

LSF, PBS, and others. We extended it to run against our 

simple LRM as well. This way all of the XML messaging 

overhead to the simple queue is the same as it would be to any 

other queue. The only difference is the remote execution via 

ssh versus the proprietary mechanisms used by the specific 

LRM.  

B. Policies 

We evaluate our prototype system using four different 

policies, which we now describe. Many other policies can be 

imagined (and can be implemented in our architecture); we 

choose these policies to provide insight into the efficiency and 

applicability of the architecture. 

1) Zero Idle 

The zero idle policy does not allow a backend node to be 

idle for any time. Thus, nodes can neither be pre-fetched nor 

cached. Each time a client connects to the frontend service and 

requests a transfer, a request for a new backend service 

instance is submitted to the LRM. When the transfer completes 

the backend service immediately ends and the node it was 

running on is released to the LRM for use in scheduling other 

jobs. When using this policy, the amount of time it takes to 

start a transfer is entirely dependent upon the wait time of the 

LRM and amount of time it takes for the notification to reach 

the controller. 

2) Infinite Idle 

The infinite idle policy is the exact opposite of the zero idle 

policy in terms of how it handles idle backend services. A set 

of backend service instances are started in advance and added 

to the transfer pool. They are allowed to be idle for the lifetime 

of the frontend service and therefore the nodes on which they 

run are never returned to the computational pool. With this 

policy there will be idle backend services ready to handle a 

client request at all times, until the system reaches maximum 

capacity. 

3) N-Idle 

The N-Idle policy is a simple approach to prefetching and 

caching backend transfer nodes. The policy attempts to have N 

backend services idle at all times. When the system starts up, 

N backend services are created. These backend services are 

idle until a transfer is requested. When the transfer is requested 

one of the N backend services is immediately allocated to 

service the transfer request. Since there are now N – 1 idle 

backend services, the controller implementing this policy 

requests the creation of a new backend service in an attempt to 

maintain N. Since creation of a new backend service takes 

time, there will not always be N idle, however the sum of idle 

and requested backend services will always equal N. 

4) Time Cache 

The Time Cache policy allows a backend service to continue 

running and servicing transfer requests for the entire wallclock 

duration. Unlike the Zero Idle policy which returns the node to 

the LRM immediately upon completion of its first and only 

transfer request, the Time Cache policy will continue to wait 

for additional transfer requests until its lease from the LRM 

times out. The assumption is that the time and effort required 

to obtain a node from the LRM is greater than that of a single 

transfer and thus it is worth caching for its wallclock time. The 

maximum amount of idle time is never greater than the 

wallclock time. 

 

The first two policies represent two extremes. Infinite idle 

represents an optimal policy from the perspective of 

connection time. Backend services are always ready, and so 

our architecture adds no additional overhead. Infinite idle is 

equivalent to the GridFTP proxy server without our 

modifications, with backend services statically assigned to a 

frontend and always available to it. In contrast, zero idle 

provides the worst case scenario for connection time. Since 
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backend services must be created for every transfer request, 

the maximum amount of latency is added to every connection. 

Conversely, since backend services are never idle, zero idle 

provides the best possible case when minimizing idle transfer 

resources, and infinite idle is the worst possible case. These 

two policies are base cases for evaluating the architecture. 

The N-idle policy is a hybrid of zero-idle and infinite-idle. It 

attempts to optimize connection times by having backend 

services immediately available for transfers while at the same 

time putting an upper bound on idle resources. While the 

number of idle backend services is bounded, the number of 

working nodes is not, and thus the policy can scale up to 

support high transfer loads. Because the value of N is 

configurable, the site administrator can decide on an 

appropriate balance between idle resources and low 

connection times. 

Administrators may want more sophisticated policies to 

address specific needs. Our architecture provides access to 

information that allows arbitrarily complex policies to be 

defined, based on intimate knowledge of the transfer service 

and a site’s history. We leave the exploration of such policies 

for future work. 

C. Metrics 

We use three criteria to evaluate the system: site bandwidth 

utilization, connection time, and user bandwidth. The most 

important metric is site bandwidth utilization. Our main goal in 

defining this architecture is to use idle network cycles. If we 

can provide transfer services with access to large amounts of 

bandwidth, we believe existing applications will make use of it 

and additional use cases will be discovered, and thus we are 

successful. In our experiments we measure bandwidth by 

running daemons on the client machines.  These daemons read 

the raw network usage from the Linux /proc filesystem [39] 

and use that information to track the number of bytes the 

machine has transferred over the life time of our experiments. 

We take samples every second and then post process the 

results to calculate bandwidth over the experiments time 

interval. Because only our jobs are running on the client 

machines we know the bytes transferred are a result of our 

experiments. Our goal is to utilize all available bandwidth so 

we must count bytes sent under the IP protocol stack. We are 

not measuring end to end throughput. If resends are needed by 

TCP due to packed loss we count the resends as additional 

bytes. Our results would otherwise appear to have used less 

network resources than were actually used. This issue has very 

little effect because all experiments are done on an under 

utilized LAN where packet loss is infrequent. 

The second metric is connection time. We define connection 

time as the latency from when a client first connects to the 

transfer service until the time the transfer begins. Before a 

transfer can begin the frontend must find an available backend 

service. In the worst case, this time will include the latency of 

the WSRF notification message updating the controller that the 

frontend services state changed, the entire length of the LRM’s 

wait queue, and the latency of the backend service request to 

the LRM. This time has the potential to be high and could have 

a significant effect on overall system throughput. Further, 

while this architecture is targeted at batch transfers, sites may 

wish to support interactive transfer services as well, in which 

case connection times need to be low. We measure the 

connection time with a plug in to globus-url-copy. The time 

interval begins immediately before the TCP connect function 

is called, and ends when FTP login message “230 User logged 

in” [40] is received. 

The last metric is achieved user bandwidth. Our goal is to 

provide a transfer service that can exploit large amounts of idle 

network cycles. In order for this service to be useful, we must 

have applications that wish to use it. To make the service 

attractive to applications we must be able to service each 

transfer request with enough bandwidth to satisfy its needs. 

How much bandwidth is needed is a subjective measure. 

Ideally the application would be the bottleneck in the transfer 

and not the transfer service. As 100 Mbit/s Ethernet cards 

become outdated and Gbit/s Ethernet cards become standard, 

even on laptops, we aim to provide near Gbit/s transfers to 

clients. 

VI. RESULTS 

We present results for five sets of experiments using our 

simple LRM.  The first experiment evaluates the validity of the 

LRM we used by comparing it to the PBS system used on the 

UC TeraGrid.  We then measure the connection time as a 

function of increasingly heavy loads.  This experiment is 

designed to analyze the overhead introduced by our system.  

We similarly measure the connection time to see how the LRM 

wait queue times affect it.  Following this we measure how our 

various policies behave under lighter, and more naturally 

occurring, client loads. The final experiment shows the 

bandwidth that our system can consume and the throughput it 

can deliver to individual clients. 

In all experiments we took care to prevent any one iteration 

of tests from affecting the next iteration. For the zero idle and 

infinite idle policies this is not a problem. Those two basic 

policies are not affected by previous client access patterns. 

However, the n idle policy can be greatly affected by previous 

access patterns. If a previous test is still holding a backend 

service, or if the backend service that was started to replace a 

used backend service has not yet begun, our results could be 

corrupted. To protect against this, we verified that the system 

was in a stable state before running any iteration of our tests. 

When one test finished we waited for all resources associated 

with previous transfers to be cleaned up and for all requested 

backed services to start before we began the next iteration of 

tests. 

A. Simple LRM Validation 

Our first results validate our simple queuing system. Since 

we intend that our architecture work with standard and widely 

used LRMs such as PBS, we must show that our system 

provides a reasonable approximation of the behavior of a 

standard system like PBS. The difference in which we are 
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interested is the amount of time it takes to execute a job once a 

node is available. With our simple queue, this is the time it 

takes to run ssh, which involves simply connecting to and 

authenticating with a daemon on the remote node, and then 

executing the job via this connection. To measure this cost we 

used ssh to remotely run a dummy job, “/bin/true,” one 

hundred times in a row. We took that time and divided it by 

one hundred to determine the average. 

With a full featured LRM there is much more involved. The 

submission program must connect and authenticate with the 

LRM’s gateway service. Once the system accepts the 

submission it must add the submission to its list of jobs waiting 

to run. Then, it must apply its scheduling algorithm to 

determine if and where the job can be scheduled. Even in 

situations where there are resources immediately available, 

these steps can take some time. We measured this time interval 

using PBS on the TeraGrid. We took the time when starting 

the submission program and again when the job actually 

started. This interval defined our access time. We repeated this 

one hundred times and again took an average. Because we are 

using a live queue we need to make sure that our jobs could be 

scheduled right away. We did not want to end up with inflated 

times due to a congested wait queue. To accomplish this we 

obtained an advance reservation for the node in question, thus 

guaranteeing that it was always ready for our job.  

The results of these measurements are shown in Table 2. 

Since PBS is much more complicated than our simple LRM, 

the average access time is orders of magnitude larger. The 

simple queue access time is never more than a second while 

the PBS, times range from 1 second to 64 seconds with a mean 

of 25.28 seconds and a standard deviation of 10.7 sec. To 

account for this difference in average times, we have our 

simple LRM wait 25 seconds with each submission in addition 

to the configured wait time. 

 

Table 2: Queue access times 

Queue Avg Time (seconds) 

PBS 25.28 

Simple queue 0.79 

 

B. Connection Time 

The next set of experiments measure the connection time. 

We configure our simple queue with four nodes in its resource 

pool, and compare performance for three policies: infinite idle, 

zero idle using a GRAM interface, and zero idle with direct 

access to our simple LRM. Each client request involves a one-

byte file transfer from /dev/zero to /dev/null. This strategy 

minimizes the use of the network for file transfer so that 

connection time is not disrupted by data transfer traffic, and 

eliminates any potential bottlenecks due to filesystem usage. 

 

Figure 4: Connection Time 

 

We evaluate the connection time under an increasing 

workload of simultaneous client requests, ranging from one to 

thirty-two. This allows us to analyze connection times as they 

vary from light client loads to heavy client loads. One client at 

a time is the lightest possible load that is interesting for this 

experiment. Thirty-two clients with Gbit/s NICs all 

transferring at the same time would use over 30Gbit/s of the 

bandwidth, which is heavy load on the spectrum in which we 

are interested. 

The graphs in Figure 4 show the results of this experiment. 

While the infinite idle policy overhead grows as the client load 

increases, it is never significant. As the graph shows it only 

minimally rises above the X-Axis when compared to the other 

two and effectively can be considered zero. The difference 

between the zero idle policy with GRAM (Zero Idle GRAM) 

and zero idle with direct calls to the simple queue (Zero Idle 

Direct) expose the latency added by the GRAM Web Service 

interface. In both cases, the overhead introduced increases 

with client load, however in the direct case the overhead 

increased only slightly beyond the wait time in the queue and 

in the GRAM case it increases steadily with load. We attribute 

this effect to XML serialization within GRAM and the single 

point of contact for the queue job submission. This additional 

overhead becomes irrelevant as wait times increase. The ease 

of use of the GRAM API and the convenience of the 

abstraction to many LRMs outweighs the added overhead for 

our purposes.  

C. Wait Time   

We next measure the effects of wait time. Figure 5 shows 

the results. As is expected, connection latency increases 

proportionately with wait time. Sites that are interested in 

providing an immediate and interactive transfer service will 

find the usefulness of the architecture decreases as wait time 

increases and will therefore be interested in the n-idle policy 

described below. Although our architecture is targeted at batch 

transfer services, we propose solutions for interactive services 

as well. The first and simplest way is to allow preemption. If 
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the controller can get immediate access to a node by 

preempting or suspending other jobs, then the queue wait time 

is no longer relevant. While preemption can be handled with 

high priorities, and backfilling can allow faster access to the 

queue for short running jobs of this nature, it may not provide 

immediate access. Suspending running jobs can provide 

immediate access; however this is a complicated issue and 

typically requires virtual machines. Since this is not always 

possible, we use pre-fetching and caching of backend services. 

 

Figure 5: The Effect of Load on Connect Time 

We perform the same study using the N-Idle policy and set 

N=4. Figure 6 shows the results. The Connect time for up to 

four simultaneous clients is low, no matter what the wait time 

of the queue. As the number of clients connecting exceeds the 

value of N, the connection time increases similarly to the zero-

idle policy yet remains lower on average due to the 

immediately available backends servicing up to N requests. 

 

Figure 6: Connection Time for Various Waits 

1) Lighter Loads 

Many clients connecting at the exact same time constitutes a 

heavy load on the system. In practice this situation will 

typically not occur: there will be some spacing of client 

requests and thus a lower load. In this experiment we measure 

the effects of the n-idle and zero idle policies under lighter 

client loads. 

 

Figure 7: Lighter Loads 

Figure 7 shows the results of an experiment in which we run 

various client loads against both the zero idle policy and the 

N=4-idle policy. The graph shows the connection time as a 

function of the delay between client requests. The zero-idle 

policy maintains a steady delay that is equal to the backend 

service start time. The N-idle connection times start off high 

because the system is overloaded; however they drop off 

quickly as the interval between requests increases. As requests 

are spaced out enough they allow enough time for previous 

requests to finish before the next starts. Recall that the time it 

takes to finish a request involves the time through the wait 

queue as well as the transfer time. With the N-Idle policy N of 

the requests can be serviced immediately and thus finish very 

quickly. Once finished the backend service’s node is returned 

to the LRM’s compute pool. The backend service that was 

started to replace the consumed backend will not be ready until 

it works its way through the wait queue. 

The point at which the connection time drops significantly 

in this case is seven seconds between transfers. The zero-idle 

line shows that the node access time is slightly below 30 

seconds. With seven seconds between transfers and four pre-

fetched nodes the system has 7*4 = 28 seconds to acquire a 

node before a new client will be stalled waiting for it. This 

results in the following formula: 

N = queue wait time / time between clients 

Network load prediction research can be used here to 

determine a value for N dynamically as the system runs based 

on the expected time between transfer requests. 

Instead of looking at the results to find an ideal value for N 

we can alternatively look at the ideal time between transfer 

requests. If client connection requests are intercepted and 

spaced far enough apart, the overall connection time could 

improve for short transfer times or for bursts in client transfer 

requests. This leaves interesting open questions relating to 

transfer time prediction. We leave this for future work. 
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D. Throughput 

As stated, the goal of this proposed architecture is to 

maximize bandwidth usage for batch data transfers. The delay 

time to the start of the transfer is secondary to maximizing 

utilization of available bandwidth. However, the wait time to 

acquire a node can affect the overall system throughput. Figure 

8 shows this. 

 

Figure 8: Single Client Throughput 

In the experiment we used the Zero-Idle GRAM policy and 

repeatedly ran a single client transfer request of a 1 GByte file, 

one hundred times in sequence. We measured the overall 

throughput used by the system as a function of an increasing 

queue wait times. The maximum possible bandwidth available 

for consumption is one Gbit/s. Our results show that we only 

achieve 20% of the maximum with no wait, and as the wait 

time increases the bandwidth utilization decreases. The 

histograms in Figure 9 provide insight into why. Peak transfer 

rates are reached only over the small interval after a backend 

service is allocated to a transfer and before the transfer is 

finished. The peak times are followed by idle intervals 

spanning the wait time plus the connection time. The longer 

the wait time, the longer the network idle time and thus the 

lower overall throughput.  

E. Caching 

One approach to eliminating the time gaps between transfers 

involves using the Time Cache policy. We demonstrate this 

with an experiment using four backends and four client 

machines. A client is run on each machine transferring a series 

of one Gigabyte files in serial. Each backend service has a 

wallclock time of one minute. 

 

Figure 9: Single Client Transfer Histograms 

 

The graph in Figure 10 shows the results of the first 60 

seconds of this experiment. Each colored bar represents the 

through put achieved by a client machine in a two seconds 

time step. Figure 10 shows the network is only idle at the 

beginning when we are requesting new nodes. The remainder 

of the time the backend services are cached and therefore 

ready to perform transfer requests immediately. Were the 

experiment to continue on for another minute we would see 

another drop in performance as the cached backends wallclock 

time expired. This ratio of cached time to fetch time can be 

adjusted by requesting longer and shorter wallclock times.  

Longer wallclock times will result in higher overall bandwidth 

utilization under heavy client loads. Conversely, shorter 

wallclock times reduce the potential backend idle time under 

light client 

loads.
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Figure 10: Time Cached Bandwidth 

The results of this experiment show that our architecture 

performs well according to the bandwidth utilization metric as 

it can scale up to network speeds. Figure 10 also shows how 

the architecture is measured against the final metric of 

achieved user throughput. Each client receives transfer rates of 

near gigabit speeds which is the maximum available to it.  

VII. CONCLUSIONS AND FUTURE WORK 

We have designed and implemented an architecture that 

allows computational sites to allocate transfer nodes 

dynamically in response to client request load. A site can use 

this architecture to utilize more of its network resources 

without leaving compute nodes idle. By providing a transfer 

service with a significant amount of available bandwidth, sites 

can better service their communities and increase their user 

base. Further, causing a glut of useable network cycles can 

enable existing and future higher level applications to take 

advantage of them. We envision this work as a launching pad 

for research into such applications. 

The majority of related work in this area focuses on storage 

system scavenging. Bandwidth usage is a part of a distributed 

storage system but when the focus is on the storage as opposed 

to the bandwidth itself different attributes get accentuated. Our 

goal is to focus strictly on idle bandwidth cycles to enable 

present and future applications that move data sets around 

effectively, making the network itself a storage system or 

capitalize on it for efficient replication. By providing a service 

with a scheduled interface to predictable amounts of 

bandwidth we can enable an array of applications. Some 

examples include:  

• Fast Write Services: An application may need to get data 

out of its memory buffers as quickly as possible so that more 

data can be brought in for processing. The application may or 

may not care about the location the final storage point of the 

data, because its primary focus is on writing the data to 

whatever sink can receive it the fastest. If the fastest endpoint 

is not the final endpoint, an out-of-band service can later move 

it to its final destination. 

• Replica Services: It can be advantageous to have multiple 

copies of datasets. Replicas not only provide redundancy in 

case of loss but can also assist with load balancing and transfer 

optimization. Clients looking to read data can be directed to 

any replica, thus lightening the load on other sources. Clients 

can also gain performance increases by reading different parts 

of the data from multiple replica locations. Applications that 

provide these replica services could use the bandwidth we 

provide as another point of replication. 

• Co-scheduling: The architecture allows for users to 

submit backend jobs directly to the LRM. This is an important 

aspect of this architecture that warrants additional comment. 

This was not directly studied in the experimental studies 

section largely because its performance is tied to that of the 

run queue and its value is not in connection time or transfer 

time but rather in the provided scheduling information. By 

allowing users to start their own backends we give them all the 

resources and features of the LRM. This includes most notably 

start time prediction and notification. Further, once the 

backend starts it will have an entire dedicated resource with a 

predictable portion of the sites bandwidth. With this 

information applications can begin to co-schedule [41] both 

sides of the transfer. 

Our prototype evaluation has shown that this system can be 

effective. It takes advantage of otherwise idle network cycle 

without causing unnecessary delays to the compute wait queue. 

When faced with heavy client loads our system can 

dynamically scale up to peak client transfer demands and 

release the resources as the load decreases. 

While our system is targeted at batch transfers, for which 

connection time is less crucial, our evaluation shows that the 

architecture can provided a reasonable interactive service 

under moderate client loads. We achieve this performance by 

pre-fetching nodes and/or caching nodes by allowing them to 

remain idle after completing transfers and before new transfers 

start. Idle resources do unnecessarily detract from the compute 

queue but we have show how to put limits on the amount of 

idle resources without preventing the system from scaling up 

under heavier loads. 

For batch transfers we have shown that the system can scale 

up to high levels of network utilization. Since we used the 

zero-idle policy in our experiments the high bandwidth 

utilization that we achieved did not come at the expense of idle 

computer resources. While we did divert resource from the run 

queue for transfers we did not leave them idle. 

In the future we would like to study the effects of a steady 

pulsing of clients in more detail. As we found in our evaluation 

of the n-idle policy, when client transfer requests are spaced 

out over time, the connect times drop significantly. We would 

like to explore specifically how and why this happens. It is 

possible that we could intercept client requests before sending 

them to the GridFTP frontend service, and then allow 

connections only at regular intervals using token bucket or 

some similar algorithm. While this strategy would impose a 

delay on the connection time, the delay may be low, regular, 
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and predictable, and thus acceptable. A key aspect of this 

study involves predicting transfer times. 

In additional future work we plan an in depth study of 

various caching policies. The effects of caching policies on 

wait time and idle time under a variety of real and simulated 

client loads would grant further insight into the usefulness of 

this architecture. As the production systems use this 

architecture we can simulate actual work loads from system 

logs to complete this study. 

We would also like to explore this problem from a different 

perspective. Instead of starting a backend service on a node 

and fully utilizing all of the node’s resources, we could attempt 

to share co-located transfers and user jobs on a single node. As 

we noted earlier, at full transfer speeds co-location is too 

disruptive. However, if our transfer rates were throttled down 

so that their network and CPU utilization did not noticeably 

detract from a user’s job, we could indeed co-locate them. One 

way to accomplish this is to set a maximum bandwidth cap to a 

rate significantly lower than the nodes NIC speed. This will 

prevent the network card from being over utilized and also 

prevent the CPU from being overloaded with packet switching 

tasks. Since the bandwidth of any one node will be greatly 

limited we will use many nodes in a coordinated striped 

transfer to achieve higher throughput rates. 

Finally, we plan to enhance our system to take advantage of 

GridFTP’s striped transfer abilities. In the system presented in 

this paper we allocate a single backend service instance to 

every data transfer request. To provide an immediate service to 

clients we will allocate two backend service instances to each 

transfer request. The first will be shared by all transfers. It will 

be running at all times waiting for to service requests. This will 

allow for transfers to immediately start but because the node’s 

NIC will be shared by all, the transfer rates will be low. A 

second backend service instance will be acquired from the 

LRM and added as a second stripe when it begins execution. 

While waiting for the second to start some progress on the 

transfer can be made and when it does start transfer rate will 

be at full speed. This feature will allow for significant 

improvement over connection times and slight improvements 

in transfer performance. 
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