Performance Analysis of a Hybrid Parallel Linear Algebra Kernel

Sue Goudy, Lorie Liebrock, Steve Schaffer

New Mexico Institute of Mining and Technology

May 18, 2004

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

That was then ...

• Pick a good candidate for hybrid parallelism and show speedup over pure MPI.

• What characteristics should this application have?
 • Both coarse- and fine-grained parallelism
 • Large number of messages when compared with computation

• Decrease the number of messages compared with useful work.
Semicoarsening Multigrid (SMG)

- Iterative method for solution of linear algebraic systems arising from the discretization of elliptic partial differential equations
- 3-dimensional version has at least three levels of parallelism
 - Matrix manipulations of data in the simulation volume
 - Plane solves (done with 2D SMG)
 - Line solves (aka tridiagonal system solves)

Sample decompositions for SMG data sets

![Diagram of sample decompositions](image)

- (a)
- (b)
- (c)
Sample SMG fine grid across processors

Sample SMG coarse grid across processors
First catch your hare ...

- Lifted serial SMG to MPI, using work decomposition based on discretization of the simulation domain
- Added OpenMP directives at lowest loop level (easy to do but not enough payoff)
- Created a block version of our line solver and raised the OpenMP directives up one level
- Ran the code with different data distributions w.r.t. MPI and OpenMP work
- Wondered why the performance was not what we expected

2D SMG work estimate

- Computational work on fine grid is $O(N^2)$.
 Work on all grids is roughly 2 times that of fine grid alone.

- Communication on fine grid is $O(N)$.
 Number of messages on all grids is roughly $\log_2(N)$ times that of fine grid alone.
First attempt at model

![Graphs showing modeled and measured execution times for RELAX2, TFlops.](image)

(a) Modeled execution time for RELAX2, TFlops
(b) Measured execution time for RELAX2, TFlops

Model methodology changes

- **FP performance** - moved from simple benchmark constants to measurements that incorporate memory hierarchy effects
- **Communication** - moved from simple pingpong benchmark to halo exchange benchmark
- **Currently examining effects of MPI task distribution**
Sample decompositions for SMG data sets

(a)
(b)
(c)

Block-distributed MPI tasks
Cyclic-distributed MPI tasks

This is now ...

- Semicoarsening multigrid seemed like a good candidate for hybrid parallelism.
- This has not been true on any system we’ve tried.
- Could we have predicted this outcome with a good model?
- What are the components of such a model?

spgoudy@nmt.edu