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Abstract

This paper presents a rather simple method to model cluster architectures using Stochastic Automata Networks

(SAN) formalism. Although, the modeling power ofSAN, the presented models are quite simple and do not fully

describe the complexity of existing clusters. It is not the purpose of this paper to proposed ready-to-evaluate models

to real clusters, but just introduce the formalism to the parallel architectures community. The conclusion of this paper

discusses the further steps in order to perform a real case evaluation.

1. Introduction

Cluster architectures are becoming a very attractive alternative when high performance is needed. With a very good

cost/performance relation and good scalability cluster systems are becoming more popular in universities, research

labs and industries. Because clusters are usually build with of the shelf components they are highly configurable.

Therefore, users may choose among several node configurations and interconnection networks. These choices will

have a direct impact on global system performance and small system peculiarities, like the node cache size or how the

nodes are connected to the network, and it may be sufficient to shift bottlenecks inside similar systems [2]. The price

of all this flexibility is paid by the programmers. To generate efficient code, parallel programmers need a very good

knowledge of the target cluster and the optimizations made for this machine may not be effective in other similar cluster

configurations. This paper presents generic models to analytically evaluate the performance of NORMA clusters (No

Remote Memory Architecture [6]) using Stochastic Automata Network(SAN).

SAN is a formalism to model complex systems as a collection of interacting subsystems[4].SAN is particularly

useful to model parallel systems because its basic primitives are parallel actions and synchronism among them[8].

Such a model could be used to help system administrators choose the right cluster configuration for their needs or to

help programmers to optimize parallel applications.

Although, the modeling power ofSAN, the presented models are quite simple and do not fully describe the com-

plexity of real clusters implementations. It is not the purpose of this paper to proposed ready-to-evaluate models to

real clusters, but just introduce the formalism to the parallel architectures community.



In order to do so, the next section informally presents theSAN formalism. Section 3 presents the generic cluster

models for some possible interconnection architectures. Finally, the conclusion discusses the further steps in order to

perform a real case evaluation.

2. Stochastic Automata Networks Formalism

In this section we introduce the basic concepts of theSAN formalism. The reader interested in a formal description

of the formalism can consult previous publications [5, 4, 7], or the original work on the subject [8]. However, a

previous knowledge about Kronecker products and tensor algebra [3] is helpful to understand the foundations of the

formalism.

The SAN formalism describes a complete system as a collection of subsystems that interact with each other.

Each subsystem is described as a stochastic automaton,i.e., an automaton in which the transitions are labeled with

probabilistic and timing information. Hence, one can build a continuous-time stochastic process1 related to theSAN.

Therefore, anySAN model has an equivalent Markov chain [9].

The state of aSAN model, calledglobal state, is defined by the combination of the states of all automata, each of

them being called alocal state. Figure 1 represents aSAN model with two automata completely independent and its

equivalent Markov chain.

In this figure (Figure 1), and in the otherSAN models of this paper we adopt the following notation:

Let

N the number of automata in aSAN model;

A(i) thei-th automaton of aSAN model, numbering the first automaton asA(1) (i ∈ 1..N );

ni the size (number of states) of automatonA(i) (i ∈ 1..N );

j(i) thej-th state of the automatonA(i), numbering the first state of the first automaton as0(1) (j ∈ 0..(ni−
1));

lj a local event identifier (the indexj has no particular semantic);

sj a synchronized event identifier (the indexj has no particular semantic);

τj a constant rate of given a transition (the indexj has no particular semantic);

πj a constant probability of given a transition (the indexj has no particular semantic);

fj a functional rate of given a transition (the indexj has no particular semantic);

gj a functional probability of given a transition (the indexj has no particular semantic);

1The time scale ofSAN models can be continuous (time is described as transition rate) or discrete (time is described as a transition probability).

In the context of this paper only continuous-timeSAN will be considered, although discrete-timeSAN can also be employed without any loss of

generality.
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Figure 1. SAN model with 2 independent automata

The basics of anySAN model is the concept of events,i.e., a thing that causes the change of theSAN global state.

There are two kinds of events:

• local events, that change theSAN global state by changing the local state of one single automaton;

• synchronized events, that change theSAN global state by changing the local state of two or more automata

simultaneously.

Note that in the model of Figure 1, there is no interaction between the two automata. In the following sections we

will extend this model to illustrate the use of twoSAN primitives (thesynchronized eventsand thefunctional rates) to

represent the interactions among automata.

The model in Figure 1 has only local events. Local events are represented by thenameof the event (an identifier2),

its rate of occurrence and aprobability of occurrence. The probability of occurrence quantifies a choice among all

transitions corresponding to a same event that can be fired from the same local state, and therefore cannot be fired

simultaneously.

2.1. Synchronized Events

While the local events change the global state passing from a global state to another that differs only by one local

state, the synchronized events can change simultaneously more than one local state,i.e., two or more automata can

change their local states simultaneously. The model in Figure 1 has only local events, Figure 2 represents a slightly

different model where a synchronized event (s1) has been included.
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Figure 2. SAN model with 2 automata and a synchronized event

The occurrence of a synchronized eventforcesall automata concerned to fire a transition corresponding to this

event. Arbitrarily, one of these automata will be chosen asmasterand the other concerned automata will be defined as

slaves. This choice of a master automatoncausingthe synchronizing event in the slaves automata may not necessarily

2In this paper we use an indexed roman letterl as identifier, but to all purposes, any identifier can be used.
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correspond to the modeled reality. Other synchronized behaviors,e.g., rendez-vous, may be modeled withSAN

synchronized events in the same manner with no loss of generality. It is also important to notice that the definition

of the master automaton is made to each synchronized event. Therefore, a same automaton can be master of a given

event and slave to other events.

The synchronized events in the master automata are represented as in local events,i.e., with the nameof the

synchronized event (an identifier), itsfiring rateand itsprobability of occurrence.

• Thenameof the event is necessary to identify which transitions must fire simultaneously;

• Thefiring ratedescribes the rate at which the event occurs;

• Theprobability of occurrencequantifies a choice among all transitions corresponding to a synchronizing event

that can be fired from the same local state.

In the slave automata, the the transition that may be fired by a synchronized event are represented with just thename

of the synchronized event and itsprobability of occurrence. There is no need to indicate the rate of the event, since it

will be indicate in the master automaton.

In the model of Figure 2, transitions0(1) → 1(1), 1(1) → 2(1), 2(1) → 0(1), and0(2) → 1(2) may be fired due

to the local eventsl1, l2, l3 andl4 respectively. Transitions2(1) → 0(1), 2(1) → 1(1), and1(2) → 0(2) may be fired

by the occurrence of the synchronized events1. Note that transition2(1) → 0(1) can be fired by the occurrence of a

local event (l3), with rateτ3, or by the occurrence of the synchronized events1. Notice that it is not important to give

further definitions when this transition will fired according to the local or the synchronized events. In this example,

the occurrence of the synchronized events1 (which happens at rateτ5) leads to one of the two situations:

• automataA(1) goes from state2(1) to state1(1) and at the same time automataA(1) goes from state0(2) to state

1(2) (with probabilityπ1); or

• automataA(1) goes from state2(1) to state0(1) and at the same time automataA(1) goes from state0(2) to state

1(2) (with probability1− π1).

2.2. Functional Rates

The use of functional rates is the second form of interaction among automata. A functional rate is no longer a

non-negative Real number (like the ordinary rates), but a discrete function of the local state of some automata over the

non-negative Real numbers. Figure 3 represents a variation of the example in Figure 2. In this new example, the rate

of the local eventl4 is no longer a constant rate, but it is a function calledf1 defined as:

f1 =





λ1 if automatonA(1) is in the state0(1);

0 if automatonA(1) is in the state1(1);

λ2 if automatonA(1) is in the state2(1);

In this model, the firing of the transition from state0(2) to 1(2) occurs with rateλ1 if automatonA(1) is in state

0(1), or with rateλ2 if automatonA(1) is in state2(1). If automatonA(1) is in state1(1) the transition from state0(2)
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to 1(2) does not occur (rate 0). Using theSAN notation employed by the software tool PEPS2000, the expression of

this function is:

f =
[
λ1

(
st(A(1)) == 0(1)

)]
+

[
λ2

(
st(A(1)) == 2(2)

)]

The interpretation of a function can be viewed as the evaluation of an expression of non-typed programming languages,

e.g., C language. Each comparison is evaluated to 1 for true and to 0 for false.

SAN model Equivalent Markov chains
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Figure 3. A SAN model with 2 automata, 1 synchronized event, and 1 functional rate

Note that the use of functional rates is not limited to local event rates. In fact, for synchronized events not only

the event rate, but also the probability of occurrence, can be expressed as a function. The use of functional transitions

is a powerful primitive of theSAN formalism, since it allows to describe very complex behaviors in a very compact

format. The computational costs to handle functional rates has decreased significantly with the developments of

numerical solutions forSAN models,e.g., the algorithms for generalized tensor products.

2.3. Numerical Results

The solution of aSAN model usually correspond to the computation of the stationary probability distribution of

each global state. The integration of such probability vector allows the stationary probability distribution of each local

state of each automaton. More sophisticated integrations of the probability vector are possible. The PEPS software

tool [10] is an academic software to solveSAN models and to integrate the stationary solution in many different ways.

PEPS software tool implements most recent numerical techniques [1, 4] to efficiently solveSAN models. In this

paper, the possible quantitative indexes that can be computed to each cluster architecture model will not be discussed.

The reader may just imagine the basic stationary probability distribution of the local states. More elaborated results

are consequence of this basic values, but their formulation is out of this paper scope.

3. Modeling Clusters with Stochastic Automata Network

In this section we introduce some simple models of clusters machines usingSAN. We assume each node working

independently and communicating with the others through a protocol of exchanging messages. This model does not

take directly into account the manner as each computer executes its tasks, nor the protocol of communication used

between them. In such way, each automaton represents the state where the node is and not how it executes the tasks

relative to each state. As in any continuous-time model, the transition rates among the states will represent the inverse

of time spend in the state.

Three different clusters interconnections are modeled: bus, ring and torus. Each interconnection has particular

characteristics and needs to be model in a different way.
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3.1. Bus Cluster

The first model describe a cluster withN nodes interconnected by a single bus,e.g., an Ethernet. The commu-

nication media (bus) is shared by all nodes, and the bus access is granted to a node at time. Figure 4 illustrate such

architecture.

Figure 4. Bus Interconnection Architecture

The SAN model proposed to represent this architecture hasN identical automata, each representing the possible

states of a node. Figure 5 represents following the four possible states:

• PId(i) - the nodei is idle (or waiting);

• Pr(i) - the nodei is processing a task;

• Tx(i) - the nodei is transmitting a message;

• Rx(i) - the nodei is receiving a message;

(l6, f2, 1)

(l1, τ1, 1) (l2, τ2, 1)

(l5, f1, 1)
(l3, τ3, 1)

(l4, τ4, 1)

A(i)

Tx(i)
Rx(i)

PId(i)

Pr(i)

f1 =
(
nb Tx(i) == 0

)
τ5 f2 =

(
nb Tx(i) == 1

)
τ6

Figure 5. Bus Interconnection Model - Node Automaton

The passage from idle to processing state and vice-versa are local transitions that not affected at all by the other

automata,i.e., local events with constant rates are used. However, this is not the case of the passages from idle state

to receive and transmitting states. The passage to the transmitting state is granted by means of a local event with a

functional ratef1. This rate has a nonzero value (τ5), i.e., it may occur, only when no other node is transmitting,i.e.,

the number of automata in stateTx(i) is equal to zero:

f1 =
(
nb Tx(i) == 0

)
τ5
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The passage to the receiving state is modeled analogously. Functional ratef2 grants the passage to receiving state

only if there is one automaton in transmitting state:

f2 =
(
nb Tx(i) == 1

)
τ6

After transmitting or receiving, the return to the idle state will not be affect by any restriction, and, once again, it

can be represented by local events with constant rates.

3.1.1. Extension to Multiple Buses

Although most cluster architectures based on bus interconnection have only one bus, architecture with more than one

bus could be easily represented by changing the functionf1 to grant access to a bus when at least one bus is available,

i.e., consideringB the number of buses:

f1 =
(
nb Tx(i) < B

)
τ5

and changingf2 to grant access when at least one node is transmitting:

f2 =
(
nb Tx(i) > 0

)
τ6

3.2. Ring Cluster

Considering a token ring architecture illustrated by Figure 6, the main difference is the absence of competition for

the interconnection media. In this paper it will be assumed an one-way ring with single token, but small model changes

could easily represent a different number of tokens and two-way message passings.

Figure 6. Ring Interconnection Architecture

The modeling technique is similar in the bus model example, since an automaton is used to represent each node.

However, the synchronized events are now necessary to describe the synchronization between each pair of neighbor

nodes. Each automaton (Figure 7) will have five states, since an additional state (TxRx(i)) will be included to represent

a node receiving by one interface and, at the same time, transmitting by its other interface.

Each automaton will have four synchronized events to represent the beginning and ending of connections with its

neighbors (receiving from previous and transmitting to the next node). Arbitrarily, it will be assumed the start of
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Figure 7. Ring Interconnection Model - Node Automaton

transmition (events1) being master in the automatonA(i) and slave in the automatonA(i+1), as well as for the event

of ending of the transmition (events3). For the events concerning reception (events2 ands4), it will be assumed to be

slave in automatonA(i) and master in automatonA(i−1).

3.2.1. Alternative Modeling for Ring Interconnection

An alternative model to represent ring architectures can use a pair of automata to represent each node (Figure 8). In this

case each automaton will represent one of the interfaces of a node. This approach considers the same synchronizing

technique as in the original model. In fact, it only splits the interfaces in two automata. The combined states of this

pair of automata (nine states) are equivalent to the five states of the previous model, since the processing state in both

automata are not compatible with any other state.

A(2)

(l1, τ1, 1) (l2, τ2, 1)(l2, τ2, 1)(l1, τ1, 1)

A(1)

(s1, τ4, 1)

Tx
(1)
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Pr(2)

PId(2)

Rx
(2)
1

(s2, τ6, 1)(s3, τ3, 1) (s4, τ5, 1)

Figure 8. Alternative Ring Model - A Pair of Automata to Each Node

Eventhough, this alternative model is absolutely equivalent to the original model, this concept is important to

understand the approach used to model the torus architecture presented in the next section.
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3.3. Torus Cluster

The last model proposed represents aTorusarchitecture. Torus topology can be viewed as a two-dimensional ring,

where each node is connected to two vertical and two horizontal neighbors (Figure 9). The same consideration about

one or two-direction ring is made for this case,i.e., in this paper one-directional rings will be considered, but small

changes in the model can be included.

Figure 9. Torus Interconnection Architecture

The modeling technique in this case could be from an automaton to each interface (four automata to each node) to a

single automaton to each node. However, the proposed model will consider two automata to represent each node: one

to represent its transmitions, and other to represent its receptions (Figure 10). The automata will indicate processing

and idle states of node (first two states) and the number of simultaneous transmition (or receptions). It is important

to stress out that this representation of a node using two automata intends to facilitate the modeling of the possible

number of states of a node.
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Figure 10. Torus Model - A Pair of Automata to Each Node

The automaton representing the transmitions will have the following four states:

• Pr(1) - the node is processing a task;

• PId(1) - no interface is transmitting a message;

• Tx
(1)
1 - one interface is transmitting a message;
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• Tx
(1)
2 - two interfaces are transmitting a message;

Analogously, the automaton representing the receptions will have the following states:

• Pr(2) - the node is processing a task;

• PId(2) - no interface is receiving a message;

• Rx
(2)
1 - one interface is receiving a message;

• Rx
(2)
2 - two interfaces are receiving a message;

As in the alternative model of the previous section, the combined automaton equivalent to the pair of automata of

Figure 10 has some unreachable states. Excepting the processing state in both automata, the three remaing states in

each automaton are compatible to each other. It results in ten states (processing state plus the nine combinations -3×3-

of the remaining states) reachable of the sixteen possible combinations (4× 4).

4. Conclusion

The presented models are very intuitive and their utility is strictly bound to an extensive work mapping the clusters

numerical information into the rates of theSAN models. In fact, the models presented in this paper intend to express

only the relationship of the interconnection policy to the basic resource sharing restrictions. It was not in the scope

of this paper to analyze real cases, nor even to propose a technique to map quantitative information in the models.

It was merely intended to show how cluster architectures could be modeled usingSAN. Keeping this goal in mind,

it is reasonable to argue that the models of the choose architectures will probably satisfy the modeling needs to the

performance evaluation of cluster architectures. The logical next steps of this work will be the comparison between

the predictions of the analytical models with real clusters configurations.

SAN formalism usually offers more efficient solutions than other traditional methods, like straigh-forward Markov

chains, but in the scope of this paper the modeling qualities ofSAN are more relevant. The presented models are

modular, and therefore can be easily extended to as many nodes as wanted. Unfortunately, to quantitative analysis

purposes the limit imposed by the state space explosion can not be ignored. The size of aSAN model is the product of

the size of each automaton (
∑N

i=1 ni). PEPS software running on a average work station (1 Mb of memory) may solve

problems 30,000,000 states. For models of bus clusters (Section 3.1), it does not present much of a problem, since

PEPS may solve models of 12 nodes. However, models of ring interconnections already may have to stop with models

with 10 nodes. These limits are imposed by memory requirements, therefore technological evolutions may facilitate

the solution of larger problems. Another possible way, of course, may be the parallelization of PEPS software in order

to solve largerSAN models. According to this point of view, such parallelization can also be included in the future

work ideas of this paper.
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